Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(4): 590-599, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488606

RESUMEN

Caenorhabditis elegans is a useful model organism to study the xenobiotic detoxification pathways of various natural and synthetic toxins, but the mechanisms of phase II detoxification are understudied. 1-Hydroxyphenazine (1-HP), a toxin produced by the bacterium Pseudomonas aeruginosa, kills C. elegans. We previously showed that C. elegans detoxifies 1-HP by adding one, two, or three glucose molecules in N2 worms. Our current study evaluates the roles that some UDP-glycosyltransferase (ugt) genes play in 1-HP detoxification. We show that ugt-23 and ugt-49 knockout mutants are more sensitive to 1-HP than reference strains N2 or PD1074. Our data also show that ugt-23 knockout mutants produce reduced amounts of the trisaccharide sugars, while the ugt-49 knockout mutants produce reduced amounts of all 1-HP derivatives except for the glucopyranosyl product compared to the reference strains. We characterized the structure of the trisaccharide sugar phenazines made by C. elegans and showed that one of the sugar modifications contains an N-acetylglucosamine (GlcNAc) in place of glucose. This implies broad specificity regarding UGT function and the role of genes other than ogt-1 in adding GlcNAc, at least in small-molecule detoxification.


Asunto(s)
Caenorhabditis elegans , Glicosiltransferasas , Animales , Glicosilación , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Fenazinas/metabolismo , Uridina Difosfato/metabolismo , Glucosa/metabolismo , Azúcares/metabolismo , Trisacáridos/metabolismo
2.
J Biol Chem ; 298(1): 101453, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838818

RESUMEN

In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.


Asunto(s)
Galactosa Oxidasa , Vacunas Neumococicas , Polisacáridos Bacterianos , Streptococcus pneumoniae , Animales , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Galactosa Oxidasa/química , Galactosa Oxidasa/inmunología , Galactosa Oxidasa/metabolismo , Glicoconjugados , Ratones , Vacunas Neumococicas/química , Vacunas Neumococicas/inmunología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/inmunología , Serogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/inmunología , Vacunas Conjugadas
3.
Plant J ; 109(6): 1441-1456, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34908202

RESUMEN

Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glucuronosiltransferasa/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo
4.
Glycobiology ; 33(3): 245-259, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36637425

RESUMEN

Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.


Asunto(s)
Adhesinas Bacterianas , Caries Dental , Humanos , Glicosilación , Adhesinas Bacterianas/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Adhesión Bacteriana/fisiología , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Células Endoteliales/metabolismo , Proteínas Portadoras/genética , Colágeno/genética , División Celular
5.
NMR Biomed ; 36(4): e4797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35799308

RESUMEN

We describe considerations and strategies for developing a nuclear magnetic resonance (NMR) sample preparation method to extract low molecular weight metabolites from high-salt spent media in a model coculture system of phytoplankton and marine bacteria. Phytoplankton perform half the carbon fixation and oxygen generation on Earth. A substantial fraction of fixed carbon becomes part of a metabolite pool of small molecules known as dissolved organic matter (DOM), which are taken up by marine bacteria proximate to phytoplankton. There is an urgent need to elucidate these metabolic exchanges due to widespread anthropogenic transformations on the chemical, phenotypic, and species composition of seawater. These changes are increasing water temperature and the amount of CO2 absorbed by the ocean at energetic costs to marine microorganisms. Little is known about the metabolite-mediated, structured interactions occurring between phytoplankton and associated marine bacteria, in part because of challenges in studying high-salt solutions on various analytical platforms. NMR analysis is problematic due to the high-salt content of both natural seawater and culture media for marine microbes. High-salt concentration degrades the performance of the radio frequency coil, reduces the efficiency of some pulse sequences, limits signal-to-noise, and prolongs experimental time. The method described herein can reproducibly extract low molecular weight DOM from small-volume, high-salt cultures. It is a promising tool for elucidating metabolic flux between marine microorganisms and facilitates genetic screens of mutant microorganisms.


Asunto(s)
Fitoplancton , Agua de Mar , Agua de Mar/química , Agua de Mar/microbiología , Fitoplancton/metabolismo , Bacterias/metabolismo , Compuestos Orgánicos/metabolismo , Agua/metabolismo
6.
Nature ; 545(7655): 500-504, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28514443

RESUMEN

Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Progresión de la Enfermedad , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Animales , Crisis Blástica , Diferenciación Celular , Proliferación Celular , Activación Enzimática , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/metabolismo , Transaminasas/biosíntesis , Transaminasas/deficiencia , Transaminasas/genética , Transaminasas/metabolismo
7.
J Am Chem Soc ; 144(36): 16325-16331, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36037279

RESUMEN

A carbene-stabilized dithiolene zwitterion (3) activates ammonia, affording 4• and 5, through both single-electron transfer (SET) and hydrogen atom transfer (HAT). Reaction products were characterized spectroscopically and by single-crystal X-ray diffraction. The mechanism of the formation of 4• and 5 was probed by experimental and computational methods. This discovery is the first example of metal-free ammonia activation via HAT.


Asunto(s)
Amoníaco , Hidrógeno , Transporte de Electrón , Hidrógeno/química , Metano/análogos & derivados
8.
J Biol Inorg Chem ; 27(8): 747-758, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36269456

RESUMEN

Five tungstopterin-containing oxidoreductases were characterized from the hyperthermophile Pyrococcus furiosus. Each enzyme catalyzes the reversible conversion of one or more aldehydes to the corresponding carboxylic acid, but they have different specificities. The physiological functions of only two of these enzymes are known: one, termed GAPOR, is a glycolytic enzyme that oxidizes glyceraldehyde-3-phosphate, while the other, termed AOR, oxidizes multiple aldehydes generated during peptide fermentation. Two of the enzymes have known structures (AOR and FOR). Herein, we focus on WOR5, the fifth tungstopterin enzyme to be discovered in P. furiosus. Expression of WOR5 was previously shown to be increased during cold shock (growth at 72 â„ƒ), although the physiological substrate is not known. To gain insight into WOR5 function, we sought to determine both its structure and identify its intracellular substrate. Crystallization experiments were performed with a concentrated cytoplasmic extract of P. furiosus grown at 72 â„ƒ and the structure of WOR5 was deduced from the crystals that were obtained. In contrast to a previous report, WOR5 is heterodimeric containing an additional polyferredoxin-like subunit with four [4Fe-4S] clusters. The active site structure of WOR5 is substantially different from that of AOR and FOR and the significant electron density observed adjacent to the tungsten cofactor of WOR5 was modeled as an aliphatic sulfonate. Biochemical assays and product analysis confirmed that WOR5 is an aliphatic sulfonate ferredoxin oxidoreductase (ASOR). A catalytic mechanism for ASOR is proposed based on the structural information and the potential role of ASOR in the cold-shock response is discussed.


Asunto(s)
Pyrococcus furiosus , Tungsteno , Tungsteno/química , Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Pyrococcus furiosus/metabolismo , Aldehídos/metabolismo
9.
J Biol Chem ; 295(27): 9223-9243, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32414843

RESUMEN

Skp1, a subunit of E3 Skp1/Cullin-1/F-box protein ubiquitin ligases, is modified by a prolyl hydroxylase that mediates O2 regulation of the social amoeba Dictyostelium and the parasite Toxoplasma gondii The full effect of hydroxylation requires modification of the hydroxyproline by a pentasaccharide that, in Dictyostelium, influences Skp1 structure to favor assembly of Skp1/F-box protein subcomplexes. In Toxoplasma, the presence of a contrasting penultimate sugar assembled by a different glycosyltransferase enables testing of the conformational control model. To define the final sugar and its linkage, here we identified the glycosyltransferase that completes the glycan and found that it is closely related to glycogenin, an enzyme that may prime glycogen synthesis in yeast and animals. However, the Toxoplasma enzyme catalyzes formation of a Galα1,3Glcα linkage rather than the Glcα1,4Glcα linkage formed by glycogenin. Kinetic and crystallographic experiments showed that the glycosyltransferase Gat1 is specific for Skp1 in Toxoplasma and also in another protist, the crop pathogen Pythium ultimum The fifth sugar is important for glycan function as indicated by the slow-growth phenotype of gat1Δ parasites. Computational analyses indicated that, despite the sequence difference, the Toxoplasma glycan still assumes an ordered conformation that controls Skp1 structure and revealed the importance of nonpolar packing interactions of the fifth sugar. The substitution of glycosyltransferases in Toxoplasma and Pythium by an unrelated bifunctional enzyme that assembles a distinct but structurally compatible glycan in Dictyostelium is a remarkable case of convergent evolution, which emphasizes the importance of the terminal α-galactose and establishes the phylogenetic breadth of Skp1 glycoregulation.


Asunto(s)
Galactosa/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Glucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Hidroxilación , Hidroxiprolina/metabolismo , Filogenia , Procolágeno-Prolina Dioxigenasa/genética , Prolil Hidroxilasas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/fisiología , Toxoplasma/metabolismo
10.
Glycobiology ; 31(11): 1520-1530, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34473830

RESUMEN

Acinetobacter baumannii has become a leading cause of bacterial nosocomial infections, in part, due to its ability to resist desiccation, disinfection and antibiotics. Several factors contribute to the tenacity and virulence of this pathogen, including production of a broad range of surface glycoconjugates, secretory systems and efflux pumps. We became interested in examining the importance of trehalose in A. baumannii after comparing intact bacterial cells by high-resolution magic angle spinning nuclear magnetic resonance and by noting high levels of this disaccharide, obscuring all other resonances in the spectrum. Since this was observed under normal growth conditions, we speculated that trehalose must serve additional functions beyond osmolyte homeostasis. Using the virulent isolate A. baumannii AB5075 and mutants in the trehalose synthesis pathway, osmoregulatory trehalose synthesis proteins A and B (△otsA and △otsB), we found that the trehalose-deficient △otsA showed increased sensitivity to desiccation, colistin, serum complement and peripheral blood mononuclear cells, while trehalose-6-phosphate producing △otsB behaved similar to the wild-type. The △otsA mutant also demonstrated increased membrane permeability and loss of capsular polysaccharide. These findings demonstrate that trehalose deficiency leads to loss of virulence in A. baumannii AB5075.


Asunto(s)
Acinetobacter baumannii/química , Permeabilidad de la Membrana Celular/genética , Monoéster Fosfórico Hidrolasas/genética , Polisacáridos/metabolismo , Trehalosa/metabolismo , Acinetobacter baumannii/patogenicidad , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Polisacáridos/deficiencia , Trehalosa/deficiencia , Trehalosa/genética , Virulencia
11.
Glycobiology ; 31(3): 266-274, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810871

RESUMEN

Paenibacillus sp. 32352 is a soil-dwelling bacterium capable of producing an enzyme, Pn3Pase that degrades the capsular polysaccharide of Streptococcus pneumoniae serotype 3 (Pn3P). Recent reports on Pn3Pase have demonstrated its initial characterization and potential for protection against highly virulent S. pneumoniae serotype 3 infections. Initial experiments revealed this enzyme functions as an exo-ß1,4-glucuronidase cleaving the ß(1,4) linkage between glucuronic acid and glucose. However, the catalytic mechanism of this enzyme is still unknown. Here, we report the detailed biochemical analysis of Pn3Pase. Pn3Pase shows no significant sequence similarity to known glycoside hydrolase (GH) families, thus this novel enzyme establishes a new carbohydrate-active enzyme (CAZy) GH family. Site-directed mutagenesis studies revealed two catalytic residues along with truncation mutants defining essential domains for function. Pn3Pase and its mutants were screened for activity, substrate binding and kinetics. Additionally, nuclear magnetic resonance spectroscopy analysis revealed that Pn3Pase acts through a retaining mechanism. This study exhibits Pn3Pase activity at the structural and mechanistic level to establish the new CAZy GH family GH169 belonging to the large GH-A clan. This study will also serve toward generating Pn3Pase derivatives with optimal activity and pharmacokinetics aiding in the use of Pn3Pase as a novel therapeutic approach against type 3 S. pneumoniae infections.


Asunto(s)
Glucuronidasa/metabolismo , Glicósido Hidrolasas/química , Paenibacillus/enzimología , Glucuronidasa/análisis , Glicósido Hidrolasas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo , Especificidad por Sustrato
12.
Angew Chem Int Ed Engl ; 60(42): 22706-22710, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314562

RESUMEN

A series of reactions between Lewis bases and an imidazole-based dithione dimer (1) has been investigated. Both cyclic(alkyl)(amino)carbene (CAAC) (2) and N-heterocyclic carbene (NHC) (4), in addition to N-heterocyclic silylene (NHSi) (6), demonstrate the capability to cleave the sulphur-sulphur bonds in 1, giving carbene-stabilized dithiolene (L0 ) zwitterions (3 and 5) and a spirocyclic silicon-dithiolene compound (7), respectively. The bonding nature of 3, 5, and 7 are probed by both experimental and theoretical methods.

13.
Glycobiology ; 30(10): 817-829, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32149355

RESUMEN

Mutations in multiple genes required for proper O-mannosylation of α-dystroglycan are causal for congenital/limb-girdle muscular dystrophies and abnormal brain development in mammals. Previously, we and others further elucidated the functional O-mannose glycan structure that is terminated by matriglycan, [(-GlcA-ß3-Xyl-α3-)n]. This repeating disaccharide serves as a receptor for proteins in the extracellular matrix. Here, we demonstrate in vitro that HNK-1 sulfotransferase (HNK-1ST/carbohydrate sulfotransferase) sulfates terminal glucuronyl residues of matriglycan at the 3-hydroxyl and prevents further matriglycan polymerization by the LARGE1 glycosyltransferase. While α-dystroglycan isolated from mouse heart and kidney is susceptible to exoglycosidase digestion of matriglycan, the functional, lower molecular weight α-dystroglycan detected in brain, where HNK-1ST expression is elevated, is resistant. Removal of the sulfate cap by a sulfatase facilitated dual-glycosidase digestion. Our data strongly support a tissue specific mechanism in which HNK-1ST regulates polymer length by competing with LARGE for the 3-position on the nonreducing GlcA of matriglycan.


Asunto(s)
Distroglicanos/metabolismo , Ácido Glucurónico/metabolismo , Sulfotransferasas/metabolismo , Animales , Distroglicanos/química , Ácido Glucurónico/química , Glicosilación , Ratones , Sulfotransferasas/química , Sulfotransferasas/aislamiento & purificación
14.
Glycobiology ; 29(4): 280-284, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649355

RESUMEN

Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, a debilitating condition that affects over 10 million humans in the American continents. In addition to its traditional mode of human entry via the "kissing bug" in endemic areas, the infection can also be spread in non-endemic countries through blood transfusion, organ transplantation, eating food contaminated with the parasites, and from mother to fetus. Previous NMR-based studies established that the parasite expresses a variety of strain-specific and developmentally-regulated O-glycans that may contribute to virulence. In this report, we describe five synthetic O-glycan analytical standards and show their potential to enable a more facile analysis of native O-glycan isomers based on mass spectrometry.


Asunto(s)
Isótopos de Carbono/análisis , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Polisacáridos/análisis , Polisacáridos/química , Trypanosoma cruzi/química , Conformación de Carbohidratos , Isótopos de Carbono/química
15.
J Biol Chem ; 292(46): 18897-18915, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28928219

RESUMEN

Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF (Skp1/Cullin-1/F-box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O2-dependent Dictyostelium development, but full glycosylation at that position is required for optimal O2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Oxígeno/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Conformación de Carbohidratos , Dictyostelium/química , Proteínas F-Box/química , Glicopéptidos/análisis , Glicopéptidos/metabolismo , Glicosilación , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Polisacáridos/análisis , Polisacáridos/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Ligasas SKP Cullina F-box/química , Ubiquitina-Proteína Ligasas/química
16.
J Biol Chem ; 292(45): 18644-18659, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28928220

RESUMEN

Skp1 is a subunit of the SCF (Skp1/Cullin 1/F-box protein) class of E3 ubiquitin ligases that are important for eukaryotic protein degradation. Unlike its animal counterparts, Skp1 from Toxoplasma gondii is hydroxylated by an O2-dependent prolyl-4-hydroxylase (PhyA), and the resulting hydroxyproline can subsequently be modified by a five-sugar chain. A similar modification is found in the social amoeba Dictyostelium, where it regulates SCF assembly and O2-dependent development. Homologous glycosyltransferases assemble a similar core trisaccharide in both organisms, and a bifunctional α-galactosyltransferase from CAZy family GT77 mediates the addition of the final two sugars in Dictyostelium, generating Galα1, 3Galα1,3Fucα1,2Galß1,3GlcNAcα1-. Here, we found that Toxoplasma utilizes a cytoplasmic glycosyltransferase from an ancient clade of CAZy family GT32 to catalyze transfer of the fourth sugar. Catalytically active Glt1 was required for the addition of the terminal disaccharide in cells, and cytosolic extracts catalyzed transfer of [3H]glucose from UDP-[3H]glucose to the trisaccharide form of Skp1 in a glt1-dependent fashion. Recombinant Glt1 catalyzed the same reaction, confirming that it directly mediates Skp1 glucosylation, and NMR demonstrated formation of a Glcα1,3Fuc linkage. Recombinant Glt1 strongly preferred the full core trisaccharide attached to Skp1 and labeled only Skp1 in glt1Δ extracts, suggesting specificity for Skp1. glt1-knock-out parasites exhibited a growth defect not rescued by catalytically inactive Glt1, indicating that the glycan acts in concert with the first enzyme in the pathway, PhyA, in cells. A genomic bioinformatics survey suggested that Glt1 belongs to the ancestral Skp1 glycosylation pathway in protists and evolved separately from related Golgi-resident GT32 glycosyltransferases.


Asunto(s)
Citoplasma/enzimología , Glucosiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Toxoplasma/metabolismo , Sustitución de Aminoácidos , Proliferación Celular , Biología Computacional , Citoplasma/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glicosilación , Mutación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Estereoisomerismo , Especificidad por Sustrato , Toxoplasma/citología , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo
17.
Anal Chem ; 88(2): 1320-7, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26653763

RESUMEN

The growing importance of biologics and biosimilars as therapeutic and diagnostic agents is giving rise to new demands for analytical methodology that can quickly and accurately assess the chemical and physical state of protein-based products. A particular challenge exists in physical characterization where the proper fold and extent of disorder of a protein is a major concern. The ability of NMR to reflect structural and dynamic properties of proteins is well recognized, but sensitivity limitations and high levels of interference from excipients in typical biologic formulations have prevented widespread applications to quality assessment. Here we demonstrate applicability of a simple one-dimensional proton NMR method that exploits enhanced spin diffusion among protons in well-structured areas of a protein. We show that it is possible to reduce excipient signals and allow focus on structural characteristics of the protein. Additional decomposition of the resulting spectra based on rotating frame spin relaxation allows separate examination of components from aggregates and disordered regions. Application to a comparison of two different monoclonal antibodies and to detection of partial pH denaturation of a monoclonal antibody illustrates the procedure.


Asunto(s)
Anticuerpos Monoclonales/química , Difusión , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Anticuerpos Monoclonales/uso terapéutico , Química Farmacéutica , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Desnaturalización Proteica , Protones
18.
Plant Cell ; 25(1): 270-87, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23371948

RESUMEN

Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.


Asunto(s)
Arabidopsis/química , Pared Celular/química , Mucoproteínas/química , Pectinas/química , Proteoglicanos/química , Xilanos/química , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Biomasa , Pared Celular/genética , Pared Celular/metabolismo , Epítopos , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Modelos Estructurales , Datos de Secuencia Molecular , Mucoproteínas/genética , Mucoproteínas/inmunología , Mucoproteínas/metabolismo , Mutación , Pectinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Isoformas de Proteínas , Proteoglicanos/metabolismo , Proteómica , Xilanos/metabolismo
19.
Glycobiology ; 25(5): 535-47, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25527427

RESUMEN

Sulfated fucans from sea urchin egg jelly express well-defined chemical structures that vary with species. This species specificity regulates the sperm acrosome reaction, a critical step to assure intra-specific fertilization. In addition, these polysaccharides are involved in other biological activities such as anticoagulation. Although sulfation patterns are relevant to the levels of response in both activities, conformation and dynamics of these glycans are also contributing factors. However, data about these features of sulfated fucans are very rare. To address this, we have employed nuclear magnetic resonance experiments combined with molecular dynamics on structurally defined oligosaccharides derived from two sulfated fucans. The results have indicated that the oligosaccharides are flexible in solution. Ring conformation of their composing units displays just the (1)C4 chair configuration. In a particular octasaccharide, composed of two tetrasaccharide sequences, inter-residual hydrogen bonds play a role to decrease dynamics in these repeating units. Conversely, the linking disaccharide [-3)-α-L-Fucp-2(OSO3(-))-(1-3)-α-L-Fucp-4(OCO3(-))-(1-] located right between the two tetrasaccharide units has amplified motions suggested to be promoted by electrostatic repulsion of sulfates on opposite sides of the central glycosidic bond. This conjunction of information about conformation and dynamics of sulfated fucan oligosaccharides provides new insights to explain how these glycans behave free in solution and influenced by sulfation patterns. It may also serve for future studies concerning structure-function relationship of sulfated fucans, especially those involving sea urchin fertilization and anticoagulation.


Asunto(s)
Polisacáridos/química , Animales , Conformación de Carbohidratos , Simulación de Dinámica Molecular , Erizos de Mar
20.
J Econ Entomol ; 107(5): 1931-45, 2014 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-26309284

RESUMEN

During oviposition, female Sirex noctilio (F.) (Siricidae) woodwasps inject their conifer hosts with a venom gland secretion. The secretion induces a variety of host physiological changes that facilitate subsequent lethal infection by a symbiotic fungus. A heat-stable factor that can migrate from the site of oviposition in the trunk through the xylem to needles in the crown of attacked pines was purified by size-fractionation and reversed-phase-high-performance liquid chromatography using activity assays based on defense gene induction as well as the needle wilt response in pine shoot explants. An 11-amino acid, posttranslationally modified peptide (SEGPROGTKRP) encoded by the most abundant transcript recovered from S. noctilio venom gland tissue comprised the backbone of the 1,850 Da active factor. Posttranslational modifications included hydroxylation of a Pro residue at position 6 as well as O-glycosylation of Ser and Thr residues at positions 1 and 8, respectively. The O-linked sugars were identical α-linked N-acetylgalactosamine residues modified at the C6 position by addition of phosphoethanolamine. In contrast to the native peptide, a synthetic version of the hydroxylated peptide backbone lacking the glycosyl side chains failed to induce pine defense genes or cause needle wilt in excised shoots. This peptide, hereafter called noctilisin, is related to the O-glycosylated short-chain proline-rich antimicrobial peptides exemplified by drosocin. The noctilisin structure contains motifs which may explain how it avoids detection by pine defense systems.


Asunto(s)
Venenos de Artrópodos/farmacología , Glicopéptidos/farmacología , Himenópteros/fisiología , Proteínas de Insectos/farmacología , Pinus/fisiología , Secuencia de Aminoácidos , Animales , Venenos de Artrópodos/genética , Secuencia de Bases , Femenino , Glicopéptidos/genética , Himenópteros/genética , Proteínas de Insectos/genética , Pinus/genética , Pinus/inmunología , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA