Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 77(3): 633-644.e5, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31836388

RESUMEN

Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.


Asunto(s)
Melanoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Wnt-5a/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma/genética , Melanoma/patología , Terapia Molecular Dirigida , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Microambiente Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/fisiología
2.
Genes Dev ; 32(3-4): 230-243, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29463573

RESUMEN

Mutant forms of p53 protein often possess protumorigenic functions, conferring increased survival and migration to tumor cells via their "gain-of-function" activity. Whether and how a common polymorphism in TP53 at amino acid 72 (Pro72Arg; referred to here as P72 and R72) impacts this gain of function has not been determined. We show that mutant p53 enhances migration and metastasis of tumors through the ability to bind and regulate PGC-1α and that this regulation is markedly impacted by the codon 72 polymorphism. Tumor cells with the R72 variant of mutant p53 show increased PGC-1α function along with greatly increased mitochondrial function and metastatic capability. Breast cancers containing mutant p53 and the R72 variant show poorer prognosis compared with P72. The combined results reveal PGC-1α as a novel "gain-of-function" partner of mutant p53 and indicate that the codon 72 polymorphism influences the impact of mutant p53 on metabolism and metastasis.


Asunto(s)
Genes p53 , Mutación , Neoplasias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular , Femenino , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Masculino , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/patología , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores
3.
J Biol Chem ; 298(12): 102637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309086

RESUMEN

The tumor suppressor protein p53 suppresses cancer by regulating processes such as apoptosis, cell cycle arrest, senescence, and ferroptosis, which is an iron-mediated and lipid peroxide-induced cell death pathway. Whereas numerous p53 target genes have been identified, only a few appear to be critical for the suppression of tumor growth. Additionally, while ferroptosis is clearly implicated in tumor suppression by p53, few p53 target genes with roles in ferroptosis have been identified. We have previously studied germline missense p53 variants that are hypomorphic or display reduced activity. These hypomorphic variants are associated with increased risk for cancer, but they retain the majority of p53 transcriptional function; as such, study of the transcriptional targets of these hypomorphs has the potential to reveal the identity of other genes important for p53-mediated tumor suppression. Here, using RNA-seq in lymphoblastoid cell lines, we identify PLTP (phospholipid transfer protein) as a p53 target gene that shows impaired transactivation by three different cancer-associated p53 hypomorphs: P47S (Pro47Ser, rs1800371), Y107H (Tyr107His, rs368771578), and G334R (Gly334Arg, rs78378222). We show that enforced expression of PLTP potently suppresses colony formation in human tumor cell lines. We also demonstrate that PLTP regulates the sensitivity of cells to ferroptosis. Taken together, our findings reveal PLTP to be a p53 target gene that is extremely sensitive to p53 transcriptional function and which has roles in growth suppression and ferroptosis.


Asunto(s)
Ferroptosis , Neoplasias , Proteínas de Transferencia de Fosfolípidos , Humanos , Apoptosis , Muerte Celular/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo
6.
Nat Commun ; 11(1): 473, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980600

RESUMEN

A variant at amino acid 47 in human TP53 exists predominantly in individuals of African descent. P47S human and mouse cells show increased cancer risk due to defective ferroptosis. Here, we show that this ferroptotic defect causes iron accumulation in P47S macrophages. This high iron content alters macrophage cytokine profiles, leads to higher arginase level and activity, and decreased nitric oxide synthase activity. This leads to more productive intracellular bacterial infections but is protective against malarial toxin hemozoin. Proteomics of macrophages reveal decreased liver X receptor (LXR) activation, inflammation and antibacterial defense in P47S macrophages. Both iron chelators and LXR agonists improve the response of P47S mice to bacterial infection. African Americans with elevated saturated transferrin and serum ferritin show higher prevalence of the P47S variant (OR = 1.68 (95%CI 1.07-2.65) p = 0.023), suggestive of its role in iron accumulation in humans. This altered macrophage phenotype may confer an advantage in malaria-endemic sub-Saharan Africa.


Asunto(s)
Hierro/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , África del Sur del Sahara , Negro o Afroamericano/genética , Animales , Infecciones Bacterianas/etiología , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Ferritinas/sangre , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Ferroptosis/fisiología , Variación Genética , Hemoproteínas/toxicidad , Humanos , Listeriosis/etiología , Receptores X del Hígado/agonistas , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Malaria/genética , Malaria/metabolismo , Ratones , Ratones Transgénicos , Transferrina/metabolismo
7.
Elife ; 92020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170774

RESUMEN

The Pro47Ser variant of p53 (S47) exists in African-descent populations and is associated with increased cancer risk in humans and mice. Due to impaired repression of the cystine importer Slc7a11, S47 cells show increased glutathione (GSH) accumulation compared to cells with wild -type p53. We show that mice containing the S47 variant display increased mTOR activity and oxidative metabolism, as well as larger size, improved metabolic efficiency, and signs of superior fitness. Mechanistically, we show that mTOR and its positive regulator Rheb display increased association in S47 cells; this is due to an altered redox state of GAPDH in S47 cells that inhibits its ability to bind and sequester Rheb. Compounds that decrease glutathione normalize GAPDH-Rheb complexes and mTOR activity in S47 cells. This study reveals a novel layer of regulation of mTOR by p53, and raises the possibility that this variant may have been selected for in early Africa.


Asunto(s)
Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Sustitución de Aminoácidos/genética , Animales , Población Negra/genética , Línea Celular , Glutatión/metabolismo , Glucólisis , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Serina-Treonina Quinasas TOR/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Cancer Res ; 80(23): 5270-5281, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33023943

RESUMEN

The protein chaperone HSP70 is overexpressed in many cancers including colorectal cancer, where overexpression is associated with poor survival. We report here the creation of a uniquely acting HSP70 inhibitor (HSP70i) that targets multiple compartments in the cancer cell, including mitochondria. This inhibitor was mitochondria toxic and cytotoxic to colorectal cancer cells, but not to normal colon epithelial cells. Inhibition of HSP70 was efficacious as a single agent in primary and metastatic models of colorectal cancer and enabled identification of novel mitochondrial client proteins for HSP70. In a syngeneic colorectal cancer model, the inhibitor increased immune cell recruitment into tumors. Cells treated with the inhibitor secreted danger-associated molecular patterns (DAMP), including ATP and HMGB1, and functioned effectively as a tumor vaccine. Interestingly, the unique properties of this HSP70i in the disruption of mitochondrial function and the inhibition of proteostasis both contributed to DAMP release. This HSP70i constitutes a promising therapeutic opportunity in colorectal cancer and may exhibit antitumor activity against other tumor types. SIGNIFICANCE: These findings describe a novel HSP70i that disrupts mitochondrial proteostasis, demonstrating single-agent efficacy that induces immunogenic cell death in treated tumors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Alarminas/metabolismo , Animales , Sistema Libre de Células , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteína HMGB1/metabolismo , Células HT29 , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Mitocondrias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Artículo en Inglés | MEDLINE | ID: mdl-29695998

RESUMEN

The p53 tumor suppressor continues to be distinguished as the most frequently mutated gene in human cancer. It is widely believed that the ability of p53 to induce senescence and programmed cell death underlies the tumor suppressor functions of p53. However, p53 has a number of other functions that recent data strongly implicate in tumor suppression, particularly with regard to the control of metabolism and ferroptosis (iron- and lipid-peroxide-mediated cell death) by p53. As reviewed here, the roles of p53 in the control of metabolism and ferroptosis are complex. Wild-type (WT) p53 negatively regulates lipid synthesis and glycolysis in normal and tumor cells, and positively regulates oxidative phosphorylation and lipid catabolism. Mutant p53 in tumor cells does the converse, positively regulating lipid synthesis and glycolysis. The role of p53 in ferroptosis is even more complex: in normal tissues, WT p53 appears to positively regulate ferroptosis, and this pathway appears to play a role in the ability of basal, unstressed p53 to suppress tumor initiation and development. In tumors, other regulators of ferroptosis supersede p53's role, and WT p53 appears to play a limited role; instead, mutant p53 sensitizes tumor cells to ferroptosis. By clearly elucidating the roles of WT and mutant p53 in metabolism and ferroptosis, and establishing these roles in tumor suppression, emerging research promises to yield new therapeutic avenues for cancer and metabolic diseases.

10.
Nat Genet ; 48(12): 1570-1575, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27749844

RESUMEN

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Lipodistrofia/genética , Mutación Missense/genética , Infarto del Miocardio/genética , PPAR gamma/genética , Sustitución de Aminoácidos , Estudios de Casos y Controles , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA