Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34639031

RESUMEN

The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore's isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes.


Asunto(s)
Procesos Fotoquímicos , Fitocromo/química , Fitocromo/metabolismo , Cinética , Luz , Modelos Moleculares , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
2.
Microbiology (Reading) ; 162(10): 1840-1856, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27535558

RESUMEN

To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.


Asunto(s)
Proteínas Bacterianas/genética , AMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/metabolismo , Operón , Regiones Promotoras Genéticas , Sinorhizobium meliloti/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Biol Chem ; 289(28): 19659-69, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24849603

RESUMEN

Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure.


Asunto(s)
Proteínas Arqueales/química , ADN de Archaea/química , Desoxirribodipirimidina Fotoliasa/química , Flavina-Adenina Dinucleótido/química , Methanosarcina/enzimología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Criptocromos/química , Criptocromos/genética , Criptocromos/metabolismo , Cristalografía por Rayos X , ADN de Archaea/genética , ADN de Archaea/metabolismo , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Methanosarcina/genética
4.
Science ; 306(5702): 1789-93, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15576622

RESUMEN

DNA photolyases use light energy to repair DNA that comprises ultraviolet-induced lesions such as the cis-syn cyclobutane pyrimidine dimers (CPDs). Here we report the crystal structure of a DNA photolyase bound to duplex DNA that is bent by 50 degrees and comprises a synthetic CPD lesion. This CPD lesion is flipped into the active site and split there into two thymines by synchrotron radiation at 100 K. Although photolyases catalyze blue light-driven CPD cleavage only above 200 K, this structure apparently mimics a structural substate during light-driven DNA repair in which back-flipping of the thymines into duplex DNA has not yet taken place.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/química , Desoxirribodipirimidina Fotoliasa/química , Dímeros de Pirimidina/química , Synechococcus/enzimología , Emparejamiento Base , Sitios de Unión , Cristalización , Cristalografía por Rayos X , ADN/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Enlace de Hidrógeno , Conformación de Ácido Nucleico , Conformación Proteica , Dímeros de Pirimidina/metabolismo , Timina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA