Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 40(3): 514-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25492133

RESUMEN

Metformin (Met), which is an insulin-sensitizer, decreases insulin resistance and fasting insulin levels. The precise molecular target of Met is unknown; however, several reports have shown an inhibitory effect on mitochondrial complex I of the electron transport chain (ETC), which is a related site for reactive oxygen species production. In addition to peripheral effects, Met is capable of crossing the blood-brain barrier, thus regulating the central mechanism involved in appetite control. The present study explores the effects of intracerebroventricular (i.c.v.) infusion of Met on ROS production on brain, insulin sensitivity and metabolic and oxidative stress outcomes in CF1 mice. Metformin (Met 50 and 100 µg) was injected i.c.v. in mice daily for 7 days; the brain mitochondrial H2O2 production, food intake, body weight and fat pads were evaluated. The basal production of H2O2 of isolated mitochondria from the hippocampus and hypothalamus was significantly increased by Met (100 µg). There was increased peripheral sensitivity to insulin (Met 100 µg) and glucose tolerance tests (Met 50 and 100 µg). Moreover, Met decreased food intake, body weight, body temperature, fat pads and survival rates. Additionally, Met (1, 4 or 10 mM) decreased mitochondrial viability and increased the production of H2O2 in neuronal cell cultures. In summary, our data indicate that a high dose of Met injected directly into the brain has remarkable neurotoxic effects, as evidenced by hypothermia, hypoglycemia, disrupted mitochondrial ETC flux and decreased survival rate.


Asunto(s)
Peso Corporal/efectos de los fármacos , Hipoglucemia/mortalidad , Metformina/administración & dosificación , Metformina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Peso Corporal/fisiología , Células Cultivadas , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/toxicidad , Infusiones Intraventriculares , Masculino , Ratones , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia/tendencias
2.
Hippocampus ; 21(10): 1082-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20824731

RESUMEN

Increasing evidence indicates that physical exercise induces adaptations at the cellular, molecular, and systemic levels that positively affect the brain. Insulin plays important functional roles within the brain that are mediated by insulin-receptor (IR) signaling. In the hippocampus, insulin improves synaptic plasticity, memory formation, and learning via direct modulation of GABAergic and glutamatergic receptors. Separately, physical exercise and central insulin administration exert relevant roles in cognitive function. We here use CF1 mice to investigate (i) the effects of voluntary exercise on hippocampal insulin signaling and memory performance and (ii) whether central insulin administration alters the effects of exercise on hippocampal insulin signaling and memory performance. Adult mice performed 30 days of voluntary exercise on running wheel and afterward both, sedentary and exercised groups, received intracerebroventricular (icv) injection of saline or insulin (0.5-5 mU). Memory performance was assessed using the inhibitory avoidance and water maze tasks. Hippocampal tissue was measured for [U-(14)C] glucose oxidation and the immunocontent of insulin receptor/signaling (IR, pTyr, pAktser473). Additionally, the phosphorylation of the glutamate NMDA receptor NR2B subunit and the capacity of glutamate uptake were measured, and immunohistochemistry was used to determine glial reactivity. Exercise significantly increased insulin peripheral sensitivity, spatial learning, and hippocampal IR/pTyrIR/pAktser473 immunocontent. Glucose oxidation, glutamate uptake, and astrocyte number also increased relative to the sedentary group. In both memory tasks, 5 mU icv insulin produced amnesia but only in exercised animals. This amnesia was associated a rapid (15 min) and persistent (24 h) increase in hippocampal pNR2B immunocontent that paralleled the increase in glial reactivity. In conclusion, physical exercise thus increased hippocampal insulin signaling and improved water maze performance. Overstimulation of insulin signaling in exercised animals, however, via icv administration impaired behavioral performance. This effect was likely the result of aberrant phosphorylation of the NR2B subunit.


Asunto(s)
Hipocampo , Insulina/administración & dosificación , Condicionamiento Físico Animal/fisiología , Receptor de Insulina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Amnesia/fisiopatología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Cognición/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmunohistoquímica , Inyecciones Intraventriculares , Resistencia a la Insulina/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Neuroglía/metabolismo , Fosforilación , Transducción de Señal/fisiología
3.
Behav Pharmacol ; 21(7): 668-75, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729714

RESUMEN

Olanzapine and highly palatable diets can alter metabolism and brain function. We investigated the interaction of chronic treatment (4 months) with olanzapine and a cafeteria diet on metabolic parameters, memory tasks (spatial and aversive), the elevated plus maze and locomotor activity induced by d-amphetamine. Male Wistar rats were separated into the following groups: standard diet vehicle, standard diet and olanzapine, cafeteria diet vehicle and cafeteria diet and olanzapine. Olanzapine was administered in the drinking water (approximately 1.5 mg/kg/day), and after 3 days of treatment, the rats exhibited an expected anxiolytic effect and reduced amphetamine-induced hyperlocomotion. After 4 months of treatment, cafeteria diet vehicle and cafeteria diet olanzapine rats exhibited an increased body weight and heavier fat pads compared with the standard diet groups. Olanzapine increased only the epididymal and mesenteric fat pads. The cafeteria diet and olanzapine group showed greater glucose intolerance compared with all other groups. The cafeteria diet altered the effects of chronic olanzapine on the performance in the water maze and inhibitory avoidance tasks. Chronic olanzapine treatment failed to affect amphetamine-induced locomotion and to produce anxiolytic effects in the elevated plus maze task, regardless of the diet. Our results suggest that chronic olanzapine caused an increase in fat pads, which is putatively involved in the etiology of many metabolic diseases. Rats on the cafeteria diet were overweight and exhibited glucose intolerance. We did not observe these effects with olanzapine treatment with the standard diet. Moreover, the chronic treatment regimen caused tolerance to the antipsychotic and anxiolytic effects of olanzapine and seemed to potentiate some of the metabolic effects of the cafeteria diet. The cafeteria diet also modified the effects of chronic treatment with olanzapine on cognitive tasks, which may represent an undesirable effect of poor diets in psychiatric patients.


Asunto(s)
Conducta Animal , Benzodiazepinas , Comida Rápida , Intolerancia a la Glucosa , Obesidad , Anfetamina/farmacología , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/efectos adversos , Conducta Animal/efectos de los fármacos , Benzodiazepinas/administración & dosificación , Benzodiazepinas/efectos adversos , Dieta/psicología , Grasas de la Dieta/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/psicología , Comida Rápida/efectos adversos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Humanos , Masculino , Aprendizaje por Laberinto , Actividad Motora/efectos de los fármacos , Obesidad/etiología , Obesidad/metabolismo , Olanzapina , Ratas , Ratas Wistar
4.
Exp Neurol ; 247: 66-72, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23499835

RESUMEN

The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H2O2). The production of H2O2 also involves the mitochondrial membrane potential (ΔΨm) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F0F1ATP synthase) and ΔΨm to regulate mitochondrial H2O2 production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H2O2 production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H2O2 production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H2O2 production when complexes I and F0F1ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ∆Ψm induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ∆Ψm induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ∆Ψm and increased mitochondrial H2O2 production.


Asunto(s)
Encéfalo/ultraestructura , Peróxido de Hidrógeno/farmacología , Insulina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidantes/farmacología , Adenosina Difosfato/farmacología , Adenosina Trifosfato/farmacología , Animales , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Transporte de Electrón , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Consumo de Oxígeno , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sinaptosomas/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA