Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 52(5): 2355-2371, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38180815

RESUMEN

The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50. We also engineered the rif2-S6E mutation that enhances the inhibitory effect of Rif2 by increasing Rif2-Rad50 interaction. Unlike rif2Δ, the rif2-S6E mutation impairs hairpin cleavage. Furthermore, it diminishes Tel1 activation by inhibiting Tel1 binding to DSBs while leaving MRX association unchanged, indicating that Rif2 can directly inhibit Tel1 recruitment to DSBs. Additionally, Rif2S6E reduces Tel1-MRX interaction and increases stimulation of ATPase by Rad50, indicating that Rif2 binding to Rad50 induces an ADP-bound MRX conformation that is not suitable for Tel1 binding. The decreased Tel1 recruitment to DSBs in rif2-S6E cells impairs DSB end-tethering and this bridging defect is suppressed by expressing a Tel1 mutant variant that increases Tel1 persistence at DSBs, suggesting a direct role for Tel1 in the bridging of DSB ends.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión a Telómeros , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo
2.
PLoS Genet ; 17(9): e1009807, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520455

RESUMEN

Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Genes Fúngicos , Histonas/aislamiento & purificación
3.
Biochem Soc Trans ; 48(2): 677-691, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32219379

RESUMEN

DNA is exposed to both endogenous and exogenous DNA damaging agents that chemically modify it. To counteract the deleterious effects exerted by DNA lesions, eukaryotic cells have evolved a network of cellular pathways, termed DNA damage response (DDR). The DDR comprises both mechanisms devoted to repair DNA lesions and signal transduction pathways that sense DNA damage and transduce this information to specific cellular targets. These targets, in turn, impact a wide range of cellular processes including DNA replication, DNA repair and cell cycle transitions. The importance of the DDR is highlighted by the fact that DDR inactivation is commonly found in cancer and causes many different human diseases. The protein kinases ATM and ATR, as well as their budding yeast orthologs Tel1 and Mec1, act as master regulators of the DDR. The initiating events in the DDR entail both DNA lesion recognition and assembly of protein complexes at the damaged DNA sites. Here, we review what is known about the early steps of the DDR.


Asunto(s)
Daño del ADN , ADN/análisis , Saccharomyces cerevisiae/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ciclo Celular , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces , Transducción de Señal , Xenopus laevis , Proteína ETS de Variante de Translocación 6
4.
J Biomed Inform ; 87: 37-49, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244122

RESUMEN

Effective stratification of cancer patients on the basis of their molecular make-up is a key open challenge. Given the altered and heterogenous nature of cancer metabolism, we here propose to use the overall expression of central carbon metabolism as biomarker to characterize groups of patients with important characteristics, such as response to ad-hoc therapeutic strategies and survival expectancy. To this end, we here introduce the data integration framework named Metabolic Reaction Enrichment Analysis (MaREA), which strives to characterize the metabolic deregulations that distinguish cancer phenotypes, by projecting RNA-seq data onto metabolic networks, without requiring metabolic measurements. MaREA computes a score for each network reaction, based on the expression of the set of genes encoding for the associated enzyme(s). The scores are first used as features for cluster analysis and then to rank and visualize in an organized fashion the metabolic deregulations that distinguish cancer sub-types. We applied our method to recent lung and breast cancer RNA-seq datasets from The Cancer Genome Atlas and we were able to identify subgroups of patients with significant differences in survival expectancy. We show how the prognostic power of MaREA improves when an extracted and further curated core model focusing on central carbon metabolism is used rather than the genome-wide reference network. The visualization of the metabolic differences between the groups with best and worst prognosis allowed to identify and analyze key metabolic properties related to cancer aggressiveness. Some of these properties are shared across different cancer (sub) types, e.g., the up-regulation of nucleic acid and amino acid synthesis, whereas some other appear to be tumor-specific, such as the up- or down-regulation of the phosphoenolpyruvate carboxykinase reaction, which display different patterns in distinct tumor (sub)types. These results might be soon employed to deliver highly automated diagnostic and prognostic strategies for cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Algoritmos , Biopsia , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Carbono/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Redes y Vías Metabólicas , Reconocimiento de Normas Patrones Automatizadas , Pronóstico
5.
PLoS Genet ; 11(11): e1005685, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26584331

RESUMEN

The MRX complex together with Sae2 initiates resection of DNA double-strand breaks (DSBs) to generate single-stranded DNA (ssDNA) that triggers homologous recombination. The absence of Sae2 not only impairs DSB resection, but also causes prolonged MRX binding at the DSBs that leads to persistent Tel1- and Rad53-dependent DNA damage checkpoint activation and cell cycle arrest. Whether this enhanced checkpoint signaling contributes to the DNA damage sensitivity and/or the resection defect of sae2Δ cells is not known. By performing a genetic screen, we identify rad53 and tel1 mutant alleles that suppress both the DNA damage hypersensitivity and the resection defect of sae2Δ cells through an Sgs1-Dna2-dependent mechanism. These suppression events do not involve escaping the checkpoint-mediated cell cycle arrest. Rather, defective Rad53 or Tel1 signaling bypasses Sae2 function at DSBs by decreasing the amount of Rad9 bound at DSBs. As a consequence, reduced Rad9 association to DNA ends relieves inhibition of Sgs1-Dna2 activity, which can then compensate for the lack of Sae2 in DSB resection and DNA damage resistance. We propose that persistent Tel1 and Rad53 checkpoint signaling in cells lacking Sae2 increases the association of Rad9 at DSBs, which in turn inhibits DSB resection by limiting the activity of the Sgs1-Dna2 resection machinery.


Asunto(s)
Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Roturas del ADN de Doble Cadena , Endonucleasas/genética , Inestabilidad Genómica/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Daño del ADN/genética , ADN Helicasas/genética , Recombinación Homóloga/genética , Hipersensibilidad/genética , Fosforilación , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética
6.
iScience ; 27(7): 110373, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071887

RESUMEN

Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end. Then, the long-range resection nucleases Exo1 and Dna2 further elongate the resected DNA tracts. We found that mutations lowering proteasome functionality bypass the need for Sae2 in DSB resection. In particular, the dysfunction of the proteasome subunit Rpn11 leads to hyper-resection and increases the levels of both Exo1 and Dna2 to such an extent that it allows the bypass of the requirement for either Exo1 or Dna2, but not for both. These observations, along with the finding that Exo1 and Dna2 are ubiquitylated, indicate a role of the proteasome in restraining DSB resection by negatively controlling the abundance of the long-range resection nucleases.

7.
Cell Rep ; 42(11): 113360, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38007689

RESUMEN

DNA damage elicits a checkpoint response depending on the Mec1/ATR kinase, which detects the presence of single-stranded DNA and activates the effector kinase Rad53/CHK2. In Saccharomyces cerevisiae, one of the signaling circuits leading to Rad53 activation involves the evolutionarily conserved 9-1-1 complex, which acts as a platform for the binding of Dpb11 and Rad9 (referred to as the 9-1-1 axis) to generate a protein complex that allows Mec1 activation. By examining the effects of both loss-of-function and hypermorphic mutations, here, we show that the Cdc55 and Tpd3 subunits of the PP2A phosphatase counteract activation of the 9-1-1 axis. The lack of this inhibitory function results in DNA-damage sensitivity, sustained checkpoint-mediated cell-cycle arrest, and impaired resection of DNA double-strand breaks. This PP2A anti-checkpoint role depends on the capacity of Cdc55 to interact with Ddc1 and to counteract Ddc1-Dpb11 complex formation by preventing Dpb11 recognition of Ddc1 phosphorylated on Thr602.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Daño del ADN , Fosforilación , ADN/metabolismo , Quinasa de Punto de Control 2/genética
8.
Cell Signal ; 92: 110262, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35093533

RESUMEN

In Saccharomyces cerevisiae, the protein kinase A (PKA) plays a central role in the control of metabolism, stress resistance and cell cycle progression. In a previous work, we used a FRET-based A-kinase activity reporter (AKAR3 probe) to monitor changes in PKA activity in vivo in single S. cerevisiae cells. Since this procedure is quite complex and time-consuming, in this work we used the AKAR3 probe (evenly distributed within the cells) and the plate reader Victor-X3™ (Perkin Elmer®) to measure PKA activity in vivo in a whole cell population. We show that in wild type strains, the FRET increases after addition of glucose to glucose-starved cells, while no changes are observed when this sugar is added to strains with either absent or attenuated PKA activity. Moreover, using the pm-AKAR3 probe, mainly expressed at the plasma membrane and partially at the vacuolar membrane, we could monitor PKA activity from the starting site of the signal to internal regions, where the signal is propagated. Finally, we also show evidence for direct activation of PKA by glucose, independent of cAMP. In conclusion, our data show that AKAR3 and pm-AKAR3 probes are useful biosensors to monitor PKA activity in a S. cerevisiae cell population using a plate reader.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Glucosa/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Front Genet ; 13: 995163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186482

RESUMEN

Studies performed in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have led the way in defining the DNA damage checkpoint and in identifying most of the proteins involved in this regulatory network, which turned out to have structural and functional equivalents in humans. Subsequent experiments revealed that the checkpoint is an elaborate signal transduction pathway that has the ability to sense and signal the presence of damaged DNA and transduce this information to influence a multifaceted cellular response that is essential for cancer avoidance. This review focuses on the work that was done in Saccharomyces cerevisiae to articulate the checkpoint concept, to identify its players and the mechanisms of activation and deactivation.

10.
Cells ; 11(20)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291091

RESUMEN

Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Telomerasa , Acortamiento del Telómero , Animales , Humanos , Carcinogénesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
11.
Nat Commun ; 12(1): 4750, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362907

RESUMEN

Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae, Dpb4 forms histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here, we show that Dpb4 plays two functions in sensing and processing DNA double-strand breaks (DSBs). Dpb4 promotes histone removal and DSB resection by interacting with Dls1 to facilitate the association of the Isw2 ATPase to DSBs. Furthermore, it promotes checkpoint activation by interacting with Dpb3 to facilitate the association of the checkpoint protein Rad9 to DSBs. Persistence of both Isw2 and Rad9 at DSBs is enhanced by the A62S mutation that is located in the Dpb4 histone fold domain and increases Dpb4 association at DSBs. Thus, Dpb4 exerts two distinct functions at DSBs depending on its interactors.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Mutación , Factores de Transcripción
12.
Front Mol Biosci ; 6: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231660

RESUMEN

DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA