Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 124(6): 1795-1805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38231229

RESUMEN

This study aimed to investigate the effects of a 4-week live high train low (LHTL; FiO2 ~ 13.5%), intervention, followed by a tapering phase, on muscle glycogen concentration. Fourteen physically active males (28 ± 6 years, 81.6 ± 15.4 kg, 179 ± 5.2 cm) were divided into a control group (CON; n = 5), and the group that performed the LHTL, which was exposed to hypoxia (LHTL; n = 9). The subjects trained using a one-legged knee extension exercise, which enabled four experimental conditions: leg training in hypoxia (TLHYP); leg control in hypoxia (CLHYP, n = 9); leg trained in normoxia (TLNOR, n = 5), and leg control in normoxia (CLNOR, n = 5). All participants performed 18 training sessions lasting between 20 and 45 min [80-200% of intensity corresponding to the time to exhaustion (TTE) reached in the graded exercise test]. Additionally, participants spent approximately 10 h day-1 in either a normobaric hypoxic environment (14.5% FiO2; ~ 3000 m) or a control condition (i.e., staying in similar tents on ~ 530 m). Thereafter, participants underwent a taper protocol consisting of six additional training sessions with a reduced training load. SpO2 was lower, and the hypoxic dose was higher in LHTL compared to CON (p < 0.001). After 4 weeks, glycogen had increased significantly only in the TLNOR and TLHYP groups and remained elevated after the taper (p < 0.016). Time to exhaustion in the LHTL increased after both the 4-week training period and the taper compared to the baseline (p < 0.001). Although the 4-week training promoted substantial increases in muscle glycogen content, TTE increased in LHTL condition.


Asunto(s)
Glucógeno , Músculo Esquelético , Humanos , Masculino , Glucógeno/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Adulto , Hipoxia/metabolismo , Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Adulto Joven
2.
J Muscle Res Cell Motil ; 43(1): 35-44, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35084659

RESUMEN

Acute metabolic and molecular response to exercise may vary according to exercise's intensity and duration. However, there is a lack regarding specific tissue alterations after acute exercise with aerobic or anaerobic predominance. The present study investigated the effects of acute exercise performed at different intensities, but with equal total load on molecular and physiological responses in swimming rats. Sixty male rats were divided into a control group and five groups performing an acute bout of swimming exercise at different intensities (80, 90, 100, 110 and 120% of anaerobic threshold [AnT]). The exercise duration of each group was balanced so all groups performed at the same total load. Gene expression (HIF-1α, PGC-1α, MCT1 and MCT4 mRNA), blood biomarkers and tissue glycogen depletion were analyzed after the exercise session. ANOVA One-Way was used to indicate statistical mean differences considering 5% significance level. Blood lactate concentration was the only biomarker sensitive to acute exercise, with a significant increase in rats exercised above AnT intensities (p < 0.000). Glycogen stores of gluteus muscle were significantly reduced in all exercised animals in comparison to control group (p = 0.02). Hepatic tissue presented significant reduction in glycogen in animals exercised above AnT (p = 0.000, as well as reduced HIF-1α mRNA and increased MCT1 mRNA, especially at the highest intensity (p = 0.002). Physiological parameters did not alter amongst groups for most tissues. Our results indicate the hepatic tissue alterations (glycogen stores and gene expressions) in response to different exercise intensities of exercise, even with the total load matched.


Asunto(s)
Condicionamiento Físico Animal , Natación , Umbral Anaerobio , Animales , Glucógeno/metabolismo , Masculino , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Ratas , Natación/fisiología
3.
Int J Sports Med ; 43(7): 632-641, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35180801

RESUMEN

Metabolic diseases are associated with hypoestrogenism owing to their lower energy expenditure and consequent imbalance. Physical training promotes energy expenditure through PGC-1α and NRF-1, which are muscle proteins of the oxidative metabolism. However, the influence of physical training on protein expression in individuals with hypoestrogenism remains uncertain. Thus, the aim of this study is to determine the effect of 12 weeks of moderate-intensity swimming training on the muscle expression of PGC-1α, NRF-1, glycogen and triglyceride in ovariectomised rats. OVX and OVX+TR rats were subjected to ovariectomy. The trained animals swam for 30 minutes, 5 days/week, at 80% of the critical load intensity. Soleus was collected to quantify PGC-1α and NRF-1 expressions, while gastrocnemius and gluteus maximus were collected to measure glycogen and triglyceride. Blood glucose was also evaluated. Whereas ovariectomy decreased PGC-1α expression (p<0.05) without altering NRF-1 (p=0.48), physical training increased PGC-1α (p<0.01) and NRF-1 (p<0.05). Ovariectomy reduced glycogen (p<0.05) and triglyceride (p<0.05), whereas physical training increased glycogen (p<0.05) but did not change triglyceride (p=0.06). Ovariectomy increased blood glucose (p<0.01), while physical training reduced it (p<0.01). In summary, 12 weeks of individualized and moderate-intensity training were capable of preventing muscle metabolic consequences caused by ovariectomy.


Asunto(s)
Músculo Esquelético , Factor 1 Relacionado con NF-E2 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal , Animales , Glucemia/metabolismo , Femenino , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Ovariectomía , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal/fisiología , Ratas , Triglicéridos/metabolismo
4.
Wilderness Environ Med ; 33(1): 128-133, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34996696

RESUMEN

Considering the challenges in meeting the high nutritional demand during ultramarathons, the aim of this study was to analyze the nutritional strategies and glycemic response of an athlete with type 1 diabetes (DM1) during participation in a 217-km ultramarathon. A 36-y-old male athlete who was diagnosed with DM1 15 y earlier was studied during participation in the Brazil 135 ultramarathon. Food consumption and blood glucose were recorded during the race, and nutritional intake was calculated after the race. The athlete completed the race in 51 h 18 min. He consumed a total of 15.0 MJ (3593 kcal), 532 g carbohydrate, 166 g protein, 92 g lipid, and 14 L of water during the race. Glycemic values ranged from 3.6 to 18.2 mmol·L-1. Most glycemic values (47%) ranged from 3.9 to 10 mmol·L-1, whereas 5% were <3.9 mmol·L-1, 16% were >10 to 13.9 mmol·L-1, and 32% were >13.9 mmol·L-1. This case report describes the dietary profile of an athlete with DM1 during a 217-km ultramarathon. Although the athlete implemented strategies that differed from those recommended in the literature, food and nutrient intake and the glycemic management strategy adopted allowed him to successfully finish the race. These results suggest that past personal experiences can be considered and that nutritional recommendations for athletes with DM1 should be individualized.


Asunto(s)
Diabetes Mellitus Tipo 1 , Atletas , Glucemia , Dieta , Ingestión de Energía , Humanos , Masculino
5.
Int J Sports Med ; 41(7): 450-460, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32396967

RESUMEN

This study aimed to investigate the relationship between mechanical parameters from the Running-based Anaerobic Sprint Test (RAST2×17.5), agility performance from the Illinois Agility Test (IAT) and all-out 30-second tethered running (AO30) in college futsal athletes. It also investigates whether these protocols are capable of identifying differences between sexes. Twenty subjects were evaluated. The IAT was applied on a specific course and performance was considered as the total time (T.T). The RAST2×17.5 consisted of six maximum efforts in a shuttle exercise of 2x17.5 m per bout. The AO30 was conducted under maximal effort on a non-motorized treadmill. Maximum, mean and minimum power were determined for RAST2×17.5 and AO30. Mean power from RAST2×17.5 was inversely and significantly correlated to T.T regardless of sex (male: r=-0.76; p=0.010; female: r=-0.89; p=0.010). A similar association was noticed for maximum power for females (r=-0.94; p=0.001). The AO30 maximum and mean power were significantly correlated with T.T (male: r=-0.67; p=0.031 and r=-0.66; p=0.035, respectively; female: r=-0.64; p=0.046 and r=0.66; p=0.035, respectively). Maximum power from RAST2×17.5 and AO30 were significantly correlated (male: r=0.68; p=0.030; female: r=0.72; p=0.019). Our results reinforce the adoption of field-based tests like RAST2×17.5 and IAT for futsal, since significant relationships among these parameters and AO30 results were obtained. Moreover, these protocols differentiated male and female athletes by mechanical and agility parameters, proving their application under specific field evaluation.


Asunto(s)
Rendimiento Atlético/fisiología , Prueba de Esfuerzo/métodos , Destreza Motora/fisiología , Deportes/fisiología , Rendimiento Atlético/psicología , Femenino , Humanos , Masculino , Consumo de Oxígeno , Carrera/fisiología , Factores Sexuales , Deportes/psicología
6.
Horm Behav ; 115: 104556, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31310763

RESUMEN

There is evidence of reduced adiposity in rodents living in a large cages (LC) as compared to animals housed in small cages (SC). Because spontaneous physical activity (SPA) provides an important portion of the total daily energy expenditure, an increase of SPA in rodents kept in LC could explain their reduced body fat accumulation. The relationship between SPA and components of physical fitness (i.e. aerobic and anaerobic fitness and body leanness) has not been previously determined. We examined the effects of eight weeks of LC exposure on SPA, body composition, feeding behavior, as well as aerobic and anaerobic running capacity in adult C57BL/6J mice. Male mice were housed in cages of two different sizes for 8 weeks: a small (SC, n = 10) and large (LC n = 10) cages with 1320 cm2 and 4800 cm2 floor space, respectively. SPA was measured gravimetrically, and food and water intake were recorded daily. Mice had critical velocity (CV) and anaerobic running capacity (ARC) evaluated at the beginning, middle course (4th week) and at the end of study (8th week). Despite non-significant differences in each week LC-mice were more active than SC-mice by considering all SPA values obtained in the entire period of 8 weeks. The difference in SPA over the whole day was mainly due to light phase activity, but also due to activity at dark period (from 6 pm to 9 pm and from 5 am to 6 am). LC-mice also exhibited higher food and water intake over the entire 8-wk period. LC-mice had lower content of fat mass (% of the eviscerated carcass) than SC-mice (SC: 8.4 ±â€¯0.4 vs LC: 6.3 ±â€¯0.3, p < 0.05). LC-mice also exhibited reduced epididymal fat pads (% of body mass) compared to SC-mice (SC: 1.3 ±â€¯0.1 vs LC: 0.9 ±â€¯0.1, p < 0.05) and retroperitoneal fat pads (SC: 0.4 ±â€¯0.05 vs LC: 0.2 ±â€¯0.02, p < 0.05). The LC-group showed significantly higher critical velocity than SC-group at the fourth week (SC: 14.9 ±â€¯0.6 m·min-1 vs LC: 18.0 ±â€¯0.3 m·min-1, p < 0.05) and eighth week (SC: 17.1 ±â€¯0.5 m·min-1 vs LC: 18.8 ±â€¯0.6 m·min-1, p < 0.05). Our findings demonstrate that eight weeks of LC housing increases SPA of C57BL/6J mice, and this may lead to reduced fat accumulation as well as higher aerobic fitness. Importantly, our study implies that SC limits SPA, possibly generating experimental artifacts in long-term rodent studies.


Asunto(s)
Adiposidad/fisiología , Conducta Animal/fisiología , Vivienda para Animales , Locomoción/fisiología , Actividad Motora/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Int J Sports Med ; 38(5): 353-358, 2017 May.
Artículo en Alemán | MEDLINE | ID: mdl-28486734

RESUMEN

To allow the use of the 3-min all-out parameters for anaerobic evaluation, the aim of the present study was to test its relationships to maximal accumulated oxygen deficit (MAOD) and short/middle distance performances. 9 swimmers (age 19±1 years, height 176.7±6.1 cm and body mass 68.7±6.1 kg) underwent a 3-min all-out test and MAOD procedures (10 submaximal efforts and one exhaustive effort at maximal force attained during a graded exercise test); both were applied using tethered swimming conditions. Short/middle free-swimming performances were assessed at 50, 100 and 200 m distances. Only the peak force (PF) attained during 3-min all-out test exhibited a direct relationship to MAOD (r=0.77; p=0.02). Mean force, mean force until 150 s and total impulse, which were obtained during the 3-min all-out test, exhibited inverse relationship to short/middle performances (r>-0.79; p<0.02). However, no relationship was observed between PF and performances. In addition, MAOD exhibited an inverse relationships to all performances (r>-0.72; p<0.04). Thus, the present study demonstrated that only PF can be used to evaluate the anaerobic metabolism and most of the 3-min all-out test parameters are dependent on force maintenance capacity, which is also important in short/middle performance.


Asunto(s)
Rendimiento Atlético/fisiología , Prueba de Esfuerzo/métodos , Oxígeno/fisiología , Natación/fisiología , Adolescente , Composición Corporal/fisiología , Metabolismo Energético , Femenino , Humanos , Masculino , Consumo de Oxígeno/fisiología , Adulto Joven
8.
Int J Sports Med ; 38(5): 378-383, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28255967

RESUMEN

This study aims to propose and validate the tethered swimming lactate minimum test (TSLacmin) estimating aerobic and anaerobic capacity in one single test session, using force as measurement parameter. 6 male and 6 female young swimmers (age=15.7±1.1 years; height=173.3±9.5 cm; weight=66.1±9.5 kg) performed 4 sessions comprising i) an all-out 30 s test and incremental test (TSLacmin); ii) 30 min of tethered swimming at constant intensity (2 sessions); iii) free-swimming time trials used to calculate critical velocity. Tethered swimming sessions used an acquisition system enabling maximum (Fmax) and mean (Fmean) force measurement and intensity variation. The tethered all-out test lasting 30 s resulted in hyperlactatemia of 7.9±2.0 mmol·l-1. TSLacmin presented a 100% success applicability rate, which is equivalent to aerobic capacity in 75% of cases. TSLacmin intensity was 37.7±7.3 N, while maximum force in the all-out test was 105±27 N. Aerobic and anaerobic TSLacmin parameters were significantly related to free-swimming performance (r=-0.67 for 100 m and r=-0.80 for 200 m) and critical velocity (r=0.80). TSLacmin estimates aerobic capacity in most cases, and both aerobic and anaerobic force parameters are well related to critical velocity and free swimming performance.


Asunto(s)
Umbral Anaerobio/fisiología , Prueba de Esfuerzo/métodos , Ácido Láctico/sangre , Natación/fisiología , Adolescente , Femenino , Humanos , Masculino
9.
Int J Sports Med ; 38(2): 125-133, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28173605

RESUMEN

The aims of the present study were 1) to evaluate the effects of 11 weeks of a typical free-swimming training program on aerobic and stroke parameters determined in tethered swimming (Study 1; n=13) and 2) to investigate the responses of tethered swimming efforts, in addition to free-swimming sessions, through 7 weeks of training (Study 2; n=21). In both studies, subjects performed a graded exercise test in tethered swimming (GET) to determine anaerobic threshold (AnT), stroke rate at AnT (SRAnT), peak force at GET (PFGET) and peak blood lactate ([La-]GET). Participants also swam 100-, 200- and 400-m lengths to evaluate performance. In Study 2, swimmers were divided into control (i. e., only free-swimming; GC [n=11]) and tethered swimming group (i. e., 50% of the main session; GTS [n=10]). The results of Study 1 demonstrate that AnT, PFGET, [La-]GET and 200-m performance were improved with free-swimming training. The SRAnT decreased with training. In Study 2, free-swimming performance and most of the graded exercise test parameters were not altered in either group. However, [La-]GET improved only for GTS. These results demonstrate that aerobic parameters obtained in tethered swimming can be used to evaluate free-swimming training responses, and the addition of tethered efforts during training routine improves the lactate production capacity of swimmers.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Natación/fisiología , Adolescente , Umbral Anaerobio , Prueba de Esfuerzo , Femenino , Humanos , Ácido Láctico/sangre , Masculino
10.
J Sports Sci ; 34(21): 2106-13, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26928746

RESUMEN

This study examined the physiological responses during exercise-to-exhaustion at the lactate-minimum-intensity with and without prior high-intensity exercise. Eleven recreationally trained males performed a graded exercise test, a lactate minimum test and two constant-load tests at lactate-minimum-intensity until exhaustion, which were applied with or without prior hyperlactatemia induction (i.e., 30-s Wingate test). The physiological responses were significantly different (P < 0.05) between constant-load tests for pulmonary ventilation ([Formula: see text]), blood-lactate-concentration ([La(-)]), pH, bicarbonate concentration ([HCO3]) and partial pressure of carbon dioxide during the initial minutes. The comparisons within constant-load tests showed steady state behaviour for oxygen uptake and the respiratory exchange ratio, but heart rate and rating of perceived exertion increased significantly during both exercise conditions, while the [Formula: see text] increased only during constant-load effort. During effort performed after high-intensity exercise: [Formula: see text], [La(-)], pH and [HCO3] differed at the start of exercise compared to another condition but were similar at the end (P > 0.05). In conclusion, the constant-load exercises performed at lactate-minimum-intensity with or without prior high-intensity exercise did not lead to the steady state of all analysed parameters; however, variables such as [La(-)], pH and [HCO3] - altered at the beginning of effort performed after high-intensity exercise - were reestablished after approximately 30 min of exercise.


Asunto(s)
Umbral Anaerobio/fisiología , Ejercicio Físico/fisiología , Fatiga/fisiopatología , Ácido Láctico/sangre , Esfuerzo Físico/fisiología , Descanso/fisiología , Adulto , Dióxido de Carbono/sangre , Prueba de Esfuerzo , Frecuencia Cardíaca , Humanos , Hiperlactatemia/etiología , Masculino , Consumo de Oxígeno , Presión Parcial , Ventilación Pulmonar , Adulto Joven
12.
J Sport Health Sci ; 13(4): 459-471, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38462172

RESUMEN

BACKGROUND: Near-infrared spectroscopy (NIRS) technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise. Since this technology has been growing and is now successfully used in laboratory and sports settings, this systematic review aimed to synthesize the evidence and enhance an integrative understanding of blood flow adjustments and oxygen (O2) changes (i.e., the balance between O2 delivery and O2 consumption) within the cerebral and muscle systems during exercise. METHODS: A systematic review was conducted using PubMed, Embase, Scopus, and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise. This review considered manuscripts written in English and available before February 9, 2023. Each step of screening involved evaluation by 2 independent authors, with disagreements resolved by a third author. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies. RESULTS: Twenty studies were included, of which 80% had good methodological quality, and involved 290 young or middle-aged adults. Different types of exercises were used to assess cerebral and muscle hemodynamic changes, such as cycling (n = 11), treadmill (n = 1), knee extension (n = 5), isometric contraction of biceps brachii (n = 3), and duet swim routines (n = 1). The cerebral hemodynamics analysis was focused on the frontal cortex (n = 20), while in the muscle, the analysis involved vastus lateralis (n = 18), gastrocnemius (n = 3), biceps brachii (n = 5), deltoid (n = 1), and intercostal muscle (n = 1). Overall, muscle deoxygenation increases during exercise, reaching a plateau in voluntary exhaustion, while in the brain, oxyhemoglobin concentration increases with exercise intensity, reaching a plateau or declining at the exhaustion point. CONCLUSION: Muscle and cerebral oxygenation respond differently to exercise, with muscle increasing O2 utilization and cerebral tissue increasing O2 delivery during exercise. However, at the exhaustion point, both muscle and cerebral oxygenation become compromised. This is characterized by a reduction in blood flow and a decrease in O2 extraction in the muscle, while in the brain, oxygenation reaches a plateau or decline, potentially resulting in motor failure during exercise.


Asunto(s)
Encéfalo , Ejercicio Físico , Músculo Esquelético , Consumo de Oxígeno , Espectroscopía Infrarroja Corta , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Encéfalo/irrigación sanguínea , Hemodinámica/fisiología , Oxígeno/metabolismo , Oxígeno/sangre , Circulación Cerebrovascular/fisiología , Adulto
13.
Sci Rep ; 14(1): 5975, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472356

RESUMEN

Inspiratory muscles pre-activation (IMPA) has been studied to improve subsequent performance in swimming. However, the effects of IMPA on various parameters in swimmers are still unknown. Therefore, this study aimed to investigate the effects of IMPA on the mechanical parameters, physiological responses, and their possible correlations with swimming performance. A total of 14 young swimmers (aged 16 ± 0 years) underwent a 30-s all-out tethered swimming test, preceded or not by IMPA, a load of 40% of the maximal inspiratory pressure (MIP), and with a volume of 2 sets of 15 repetitions. The mechanical (strength, impulse, and fatigue index) and physiological parameters (skin temperature and lactatemia) and the assessment of perceived exertion and dyspnea were monitored in both protocols. The IMPA used did not increase the swimming force, and skin temperature, decrease blood lactate concentration, or subjective perception of exertion and dyspnea after the high-intensity tethered swimming exercises. Positive correlations were found between mean force and blood lactate (without IMPA: r = 0.62, P = 0.02; with IMPA: r = 0.65, P = 0.01). The impulse was positively correlated with blood lactate (without IMPA: r = 0.71, P < 0.01; with IMPA: r = 0.56, P = 0.03). Our results suggest that new IMPA protocols, possibly with increased volume, should be developed in order to improve the performance of young swimmers.


Asunto(s)
Rendimiento Atlético , Natación , Humanos , Natación/fisiología , Temperatura Cutánea , Rendimiento Atlético/fisiología , Músculos , Disnea , Lactatos
14.
Eur J Appl Physiol ; 113(7): 1859-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23456272

RESUMEN

To assess the effects of continuous exercise training at intensities corresponding to 80 and 90 % of the lactate minimum test (LM), we evaluated antioxidant activity, hormone concentration, biochemical analyses and aerobic and anaerobic performance, as well as glycogen stores, during 12 weeks of swimming training in rats. One-hundred rats were separated into three groups: control (CG, n = 40), exercise at 80 (EG80, n = 30) and 90% (EG90, n = 30) of LM. The training lasted 12 weeks, with sessions of 60 min/day, 6 days/week. The intensity was based at 80 and 90% of the LM. The volume did not differ between training groups (X of EG80 = 52 ± 4 min; X of EG90 = 56 ± 2 min). The glycogen concentration (mg/100 mg) in the gastrocnemius increased after the training in EG80 (0.788 ± 0.118) and EG90 (0.795 ± 0.157) in comparison to the control (0.390 ± 0.132). The glycogen stores in the soleus enhanced after the training in EG90 (0.677 ± 0.230) in comparison to the control (0.343 ± 0.142). The aerobic performance increased by 43 and 34% for EG80 and EG90, respectively, in relation to baseline. The antioxidant enzymes remain unchanged during the training. Creatine kinase (U/L) increased after 8 weeks in both groups (EG80 = 427.2 ± 97.4; EG90 = 641.1 ± 90.2) in relation to the control (246.9 ± 66.8), and corticosterone (ng/mL) increased after 12 weeks in EG90 (539 ± 54) in comparison to the control (362 ± 44). The continuous exercise at 80 and 90% of the LM has a marked aerobic impact on endurance performance without significantly biomarkers changes compared to control.


Asunto(s)
Adaptación Fisiológica , Umbral Anaerobio , Esfuerzo Físico/fisiología , Animales , Biomarcadores/sangre , Corticosterona/sangre , Creatina Quinasa/sangre , Glucógeno/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Peroxidasas/sangre , Ratas , Ratas Wistar , Natación
15.
BMJ Open Sport Exerc Med ; 9(3): e001520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780131

RESUMEN

High-intensity interval training (HIIT) is a popular method for optimising sports performance and, more recently, improving health-related parameters. The inclusion of hypoxia during HIIT can promote additional gains compared with normoxia. However, reductions in the effort intensities compared with the same training performed in normoxia have been reported. Studies have reported that adding hypoxia during periods of inter-effort recovery (IEH) enables maintenance of the intensity of efforts. It also promotes additional gains from exposure to hypoxia. Our call is for researchers to consider IEH in experiments involving different models of HIIT. Additionally, we consider the need to answer the following questions: What is the clinically relevant minimum dose of exposure to hypoxia during the recovery periods between efforts so that favourable adaptations of parameters are associated with health and sports performance? How does the intensity of exertion influence the responses to hypoxia exposure during recovery periods? What are the chronic effects of different models of HIIT and hypoxia recovery on sports performance?

16.
Life Sci ; 317: 121443, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709910

RESUMEN

There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.


Asunto(s)
Equilibrio Ácido-Base , Hipoxia , Animales , Ratones , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Oxígeno , Tolerancia al Ejercicio/fisiología , Consumo de Oxígeno/fisiología
17.
Eur J Appl Physiol ; 112(3): 839-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21681481

RESUMEN

This study was undertaken to characterize the effects of the linear periodized training in rats on aerobic and anaerobic performance, glycogen concentration in soleus, gastrocnemius and liver, hormones concentrations (testosterone and corticosterone), enzymes and metabolites (creatine kinase, lactate dehydrogenase, creatinine, uric acid and urea) as well as antioxidant system (catalase, superoxide dismutase and sulfhydryl groups) after basic, specific and taper periods. Seventy male Wistar rats were randomly separated in two groups: control/sedentary (CT, n = 40) and linear periodized training (LPT, n = 30). The LPT was carried out during a period of 12 weeks (w) with frequency of 6 days/week. The training period was subdivided in three mesocycles: basic (6 weeks), specific (4.5 weeks) and taper (1.5 weeks). The real volume of the training obtained in LPT reduced 7% in relation to the estimated volume. The anaerobic index in LPT after basic and taper was higher than CT in respective period but unchanged intra-group during mesocycles. The aerobic performance in LPT was higher than CT after basic, specific and taper. The creatine kinase and catalase reduced after the taper period in relation to CT and baseline. The glycogen stores in soleus increased after basic in relation to CT. The liver glycogen concentration increased after taper in relation to basic and specific period as well in comparison to CT. In conclusion, the stress biomarkers reduced in taper period in order to increase the aerobic and anaerobic performance in relation to CT.


Asunto(s)
Adaptación Fisiológica/fisiología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Algoritmos , Animales , Antioxidantes/metabolismo , Rendimiento Atlético/fisiología , Análisis Químico de la Sangre , Creatina Quinasa/metabolismo , Prueba de Esfuerzo/métodos , Glucógeno/metabolismo , Masculino , Músculo Esquelético/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Natación/fisiología , Factores de Tiempo
18.
Metabolites ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629906

RESUMEN

A deficit of estrogen is associated with energy substrate imbalance, raising the risk of metabolic diseases. Physical training (PT) is a potent metabolic regulator through oxidation and storage of substrates transported by GLUT4 and FAT CD36 in skeletal muscle. However, little is known about the effects of PT on these carriers in an estrogen-deficit scenario. Thus, the aim of this study was to determine the influence of 12 weeks of PT on metabolic variables and GLUT4 and FAT CD36 expression in the skeletal muscle of animals energetically impaired by ovariectomy (OVX). The trained animals swam 30 min/day, 5 days/week, at 80% of the critical load intensity. Spontaneous physical activity was measured biweekly. After training, FAT CD36 and GLUT4 expressions were quantified by immunofluorescence in the soleus, as well as muscular glycogen and triglyceride of the soleus, gluteus maximus and gastrocnemius. OVX significantly reduced FAT CD36, GLUT4 and spontaneous physical activity (p < 0.01), while PT significantly increased FAT CD36, GLUT4 and spontaneous physical activity (p < 0.01). PT increased soleus glycogen, and OVX decreased muscular triglyceride of gluteus maximus. Therefore, OVX can cause energy disarray through reduction in GLUT4 and FAT CD36 and their muscle substrates and PT prevented these metabolic consequences, masking ovarian estrogen's absence.

19.
Biology (Basel) ; 11(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892959

RESUMEN

The purpose of this study was to use traditional physical assessments combined with a metabolomic approach to compare the anthropometric, physical fitness level, and serum fasting metabolic profile among U22 soccer players at different competitive levels. In the experimental design, two teams of male U22 soccer were evaluated (non-elite = 20 athletes, competing in a regional division; elite = 16 athletes, competing in the first division of the national U22 youth league). Earlobe blood samples were collected, and metabolites were extracted after overnight fasting (12 h). Untargeted metabolomics through Liquid Chromatograph Mass Spectrometry (LC-MS) analysis and anthropometric evaluation were performed. Critical velocity was applied to determine aerobic (CV) and anaerobic (ARC) capacity. Height (non-elite = 174.4 ± 7.0 cm; elite = 176.5 ± 7.0 cm), body mass index (non-elite = 22.1 ± 2.4 kg/m2; elite = 21.9 ± 2.3 kg/m2), body mass (non-elite = 67.1 ± 8.8 kg; elite = 68.5 ± 10.1 kg), lean body mass (non-elite = 59.3 ± 7.1 kg; elite = 61.1 ± 7.9 kg), body fat (non-elite = 7.8 ± 2.4 kg; elite = 7.3 ± 2.4 kg), body fat percentage (non-elite = 11.4 ± 2.4%; elite = 10.5 ± 1.7%), hematocrit (non-elite = 50.2 ± 4.0%; elite = 51.0 ± 4.0%), CV (non-elite = 3.1 ± 0.4 m/s; elite = 3.0 ± 0.2 m/s), and ARC (non-elite = 129.6 ± 55.7 m; elite = 161.5 ± 61.0 m) showed no significant differences between the elite and non-elite teams, while the multivariate Partial Least Squares Discriminant Analysis (PLS-DA) model revealed a separation between the elite and non-elite athletes. Nineteen metabolites with importance for projection (VIP) >1.0 were annotated as belonging to the glycerolipid, sterol lipid, fatty acyl, flavonoid, and glycerophospholipid classes. Metabolites with a high relative abundance in the elite group were related in the literature to a better level of aerobic power, greater efficiency in the recovery process, and improvement of mood, immunity, decision making, and accuracy, in addition to acting in mitochondrial preservation and electron transport chain maintenance. In conclusion, although classical physical assessments were not able to distinguish the teams at different competitive levels, the metabolomics approach successfully indicated differences between the fasting metabolic profiles of elite and non-elite teams.

20.
Front Physiol ; 13: 948422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091363

RESUMEN

Although the link between sleep and hematological parameters is well-described, it is unclear how this integration affects the swimmer's performance. The parameters derived from the non-invasive critical velocity protocol have been extensively used to evaluate these athletes, especially the aerobic capacity (critical velocity-CV) and the anaerobic work capacity (AWC). Thus, this study applied the complex network model to verify the influence of sleep and hematological variables on the CV and AWC of young swimmers. Thirty-eight swimmers (male, n = 20; female, n = 18) completed five experimental evaluations. Initially, the athletes attended the laboratory facilities for venous blood collection, anthropometric measurements, and application of sleep questionnaires. Over the 4 subsequent days, athletes performed randomized maximal efforts on distances of 100, 200, 400, and 800-m. The aerobic and anerobic parameters were determined by linear function between distance vs. time, where CV relates to the slope of regression and AWC to y-intercept. Weighted but untargeted networks were generated based on significant (p < 0.05) correlations among variables regardless of the correlation coefficient. Betweenness and eigenvector metrics were used to highlight the more important nodes inside the complex network. Regardless of the centrality metric, basophils and red blood cells appeared as influential nodes in the networks with AWC or CV as targets. The role of other hematologic components was also revealed in these metrics, along with sleep total time. Overall, these results trigger new discussion on the influence of sleep and hematologic profile on the swimmer's performance, and the relationships presented by this targeted complex network can be an important tool throughout the athlete's development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA