Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Chem Biol ; 19(5): 575-584, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604564

RESUMEN

C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.


Asunto(s)
Manosiltransferasas , Triptófano , Humanos , Manosiltransferasas/genética , Manosiltransferasas/química , Manosiltransferasas/metabolismo , Triptófano/metabolismo , Glicosilación , Péptidos/metabolismo , Proteínas de la Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074914

RESUMEN

Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Redes y Vías Metabólicas , Metilglucósidos/metabolismo , Estrés Oxidativo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Metabolismo de los Hidratos de Carbono , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Azufre/metabolismo
3.
J Biol Chem ; 299(4): 103038, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806678

RESUMEN

The Carbohydrate-Active Enzyme classification groups enzymes that breakdown, assemble, or decorate glycans into protein families based on sequence similarity. The glycoside hydrolases (GH) are arranged into over 170 enzyme families, with some being very large and exhibiting distinct activities/specificities towards diverse substrates. Family GH31 is a large family that contains more than 20,000 sequences with a wide taxonomic diversity. Less than 1% of GH31 members are biochemically characterized and exhibit many different activities that include glycosidases, lyases, and transglycosidases. This diversity of activities limits our ability to predict the activities and roles of GH31 family members in their host organism and our ability to exploit these enzymes for practical purposes. Here, we established a subfamily classification using sequence similarity networks that was further validated by a structural analysis. While sequence similarity networks provide a sequence-based separation, we obtained good segregation between activities among the subfamilies. Our subclassification consists of 20 subfamilies with sixteen subfamilies containing at least one characterized member and eleven subfamilies that are monofunctional based on the available data. We also report the biochemical characterization of a member of the large subfamily 2 (GH31_2) that lacked any characterized members: RaGH31 from Rhodoferax aquaticus is an α-glucosidase with activity on a range of disaccharides including sucrose, trehalose, maltose, and nigerose. Our subclassification provides improved predictive power for the vast majority of uncharacterized proteins in family GH31 and highlights the remaining sequence space that remains to be functionally explored.


Asunto(s)
Glicósido Hidrolasas , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Filogenia , Polisacáridos/metabolismo , Proteínas , Especificidad por Sustrato , Betaproteobacteria/enzimología , Familia de Multigenes
4.
J Biol Chem ; 299(11): 105338, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838169

RESUMEN

Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant, algal, and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for SQ breakdown is the sulfoglycolytic Embden-Meyerhof-Parnas pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is understood for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures of complexes with substrate SFP and product dihydroxyacetone phosphate reveal a dimer-of-dimers (tetrameric) assembly, the sulfonate-binding pocket, two metal-binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal-dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfoglycolytic Embden-Meyerhof-Parnas gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases have mututally exclusive occurrence within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar.


Asunto(s)
Aldehído-Liasas , Fructosa-Bifosfato Aldolasa , Aldehído-Liasas/química , Carbono , Fructosa-Bifosfato Aldolasa/química , Metales , Fosfatos
5.
J Biol Chem ; 299(3): 103006, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775128

RESUMEN

Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Humanos , Cryptosporidium parvum/metabolismo , Criptosporidiosis/parasitología , Criptosporidiosis/prevención & control , Glicosilación , Cryptosporidium/metabolismo , Proteínas Protozoarias/química , Esporozoítos , Trombospondinas/metabolismo
6.
Org Biomol Chem ; 22(16): 3237-3244, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567495

RESUMEN

The solute-binding protein (SBP) components of periplasmic binding protein-dependent ATP-binding cassette (ABC)-type transporters often possess exquisite selectivity for their cognate ligands. Maltose binding protein (MBP), the best studied of these SBPs, has been extensively used as a fusion partner to enable the affinity purification of recombinant proteins. However, other SBPs and SBP-ligand based affinity systems remain underexplored. The sulfoquinovose-binding protein SmoF, is a substrate-binding protein component of the ABC transporter cassette in Agrobacterium tumefaciens involved in importing sulfoquinovose (SQ) and its derivatives for SQ catabolism. Here, we show that SmoF binds with high affinity to the octyl glycoside of SQ (octyl-SQ), demonstrating remarkable tolerance to extension of the anomeric substituent. The 3D X-ray structure of the SmoF·octyl-SQ complex reveals accommodation of the octyl chain, which projects to the protein surface, providing impetus for the synthesis of a linker-equipped SQ-amine using a thiol-ene reaction as a key step, and its conjugation to cyanogen bromide modified agarose. We demonstrate the successful capture and release of SmoF from SQ-agarose resin using SQ as competitive eluant, and selectivity for release versus other organosulfonates. We show that SmoF can be captured and purified from a cell lysate, demonstrating the utility of SQ-agarose in capturing SQ binding proteins from complex mixtures. The present work provides a pathway for development of 'capture-and-release' affinity resins for the discovery and study of SBPs.


Asunto(s)
Agrobacterium tumefaciens , Sefarosa , Sefarosa/química , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X
7.
J Am Chem Soc ; 145(51): 28216-28223, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38100472

RESUMEN

The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.


Asunto(s)
Redes y Vías Metabólicas , NAD , NAD/metabolismo , Metilglucósidos/química , Metilglucósidos/metabolismo , Plantas , Azufre/metabolismo
8.
PLoS Pathog ; 17(6): e1009658, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133469

RESUMEN

During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation.


Asunto(s)
Arginina/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucosa/metabolismo , Glicosiltransferasas/metabolismo , Factores de Virulencia/metabolismo , Línea Celular , Humanos
9.
Nat Chem Biol ; 17(4): 428-437, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542533

RESUMEN

Tryptophan C-mannosylation is an unusual co-translational protein modification performed by metazoans and apicomplexan protists. The prevalence and biological functions of this modification are poorly understood, with progress in the field hampered by a dearth of convenient tools for installing and detecting the modification. Here, we engineer a yeast system to produce a diverse array of proteins with and without tryptophan C-mannosylation and interrogate the modification's influence on protein stability and function. This system also enabled mutagenesis studies to identify residues of the glycosyltransferase and its protein substrates that are crucial for catalysis. The collection of modified proteins accrued during this work facilitated the generation and thorough characterization of monoclonal antibodies against tryptophan C-mannosylation. These antibodies empowered proteomic analyses of the brain C-glycome by enriching for peptides possessing tryptophan C-mannosylation. This study revealed many new modification sites on proteins throughout the secretory pathway with both conventional and non-canonical consensus sequences.


Asunto(s)
Manosa/química , Ingeniería de Proteínas/métodos , Triptófano/metabolismo , Secuencia de Aminoácidos/genética , Anticuerpos/inmunología , Glicosilación , Glicosiltransferasas/metabolismo , Manosa/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estabilidad Proteica , Proteómica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Triptófano/química
10.
Arch Microbiol ; 205(4): 155, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000297

RESUMEN

Levoglucosan is produced in the pyrolysis of cellulose and starch, including from bushfires or the burning of biofuels, and is deposited from the atmosphere across the surface of the earth. We describe two levoglucosan degrading Paenarthrobacter spp. (Paenarthrobacter nitrojuajacolis LG01 and Paenarthrobacter histidinolovorans LG02) that were isolated from soil by metabolic enrichment using levoglucosan as the sole carbon source. Genome sequencing and proteomics analysis revealed the expression of a series of genes encoding known levoglucosan degrading enzymes, levoglucosan dehydrogenase (LGDH, LgdA), 3-keto-levoglucosan ß -eliminase (LgdB1) and glucose 3-dehydrogenase (LgdC), along with an ABC transporter cassette and an associated solute binding protein. However, no homologues of 3-ketoglucose dehydratase (LgdB2) were evident, while the expressed genes contained a range of putative sugar phosphate isomerases/xylose isomerases with weak similarity to LgdB2. Sequence similarity network analysis of genome neighbours of LgdA revealed that homologues of LgdB1 and LgdC are generally conserved in a range of bacteria in the phyla Firmicutes, Actinobacteria and Proteobacteria. One group of sugar phosphate isomerase/xylose isomerase homologues (named LgdB3) was identified with limited distribution that is mutually exclusive with LgdB2, and we propose that they may fulfil a similar function. LgdB1, LgdB2 and LgdB3 adopt similar predicted 3D folds, suggesting overlapping function in processing intermediates in LG metabolism. Our findings highlight diversity within the LGDH pathway, through which bacteria utilize levoglucosan as a nutrient source.


Asunto(s)
Actinobacteria , Fosfatos de Azúcar , Bacterias/genética , Bacterias/metabolismo , Actinobacteria/metabolismo , Glucosa/metabolismo
11.
Appl Environ Microbiol ; 88(15): e0096822, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862679

RESUMEN

Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the ß-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on ß-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.


Asunto(s)
Cellulomonas , Oxigenasas de Función Mixta , Bacterias/metabolismo , Cellulomonas/metabolismo , Quitina/metabolismo , Ecosistema , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Especificidad por Sustrato
12.
J Biol Chem ; 295(19): 6677-6688, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32220931

RESUMEN

Fucosylation of the innermost GlcNAc of N-glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N-glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N-glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80-2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process.


Asunto(s)
Fucosiltransferasas/química , Guanosina Difosfato/química , Simulación de Dinámica Molecular , Animales , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Humanos , Ratones
13.
J Am Chem Soc ; 143(32): 12699-12707, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34346681

RESUMEN

The biological functions of tryptophan C-mannosylation are poorly understood, in part, due to a dearth of methods for preparing pure glycopeptides and glycoproteins with this modification. To address this issue, efficient and scalable methods are required for installing this protein modification. Here, we describe unique Ni-catalyzed cross-coupling conditions that utilize photocatalysis or a Hantzsch ester photoreductant to couple glycosyl halides with (hetero)aryl bromides, thereby enabling the α-C-mannosylation of 2-bromo-tryptophan, peptides thereof, and (hetero)aryl bromides more generally. We also report that 2-(α-d-mannopyranosyl)-L-tryptophan undergoes facile anomerization in the presence of acid: something that must be considered when preparing and handling peptides with this modification. These developments enabled the first automated solid-phase peptide syntheses of C-mannosylated glycopeptides, which we used to map the epitope of an antibody, as well as providing the first verified synthesis of Carmo-HrTH-I, a C-mannosylated insect hormone. To complement this approach, we also performed late-stage tryptophan C-mannosylation on a diverse array of peptides, demonstrating the broad scope and utility of this methodology for preparing glycopeptides.

14.
Proc Natl Acad Sci U S A ; 115(30): 7783-7788, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29997173

RESUMEN

CD52, a glycophosphatidylinositol (GPI)-anchored glycoprotein, is released in a soluble form following T cell activation and binds to the Siglec (sialic acid-binding Ig-like lectin)-10 receptor on T cells to suppress their function. We show that binding of CD52-Fc to Siglec-10 and T cell suppression requires the damage-associated molecular pattern (DAMP) protein, high-mobility group box 1 (HMGB1). CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this in turn promoted binding of the CD52 N-linked glycan, in α-2,3 sialic acid linkage with galactose, to Siglec-10. Suppression of T cell function was blocked by anti-HMGB1 antibody or the antiinflammatory Box A domain of HMGB1. CD52-Fc induced tyrosine phosphorylation of Siglec-10 and was recovered from T cells complexed with HMGB1 and Siglec-10 in association with SHP1 phosphatase and the T cell receptor (TCR). Thus, soluble CD52 exerts a concerted immunosuppressive effect by first sequestering HMGB1 to nullify its proinflammatory Box B, followed by binding to the inhibitory Siglec-10 receptor, triggering recruitment of SHP1 to the intracellular immunoreceptor tyrosine-based inhibitory motif of Siglec-10 and its interaction with the TCR. This mechanism may contribute to immune-inflammatory homeostasis in pathophysiologic states and underscores the potential of soluble CD52 as a therapeutic agent.


Asunto(s)
Antígeno CD52/inmunología , Proteína HMGB1/inmunología , Lectinas/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Secuencias de Aminoácidos , Anticuerpos/farmacología , Femenino , Proteína HMGB1/antagonistas & inhibidores , Humanos , Masculino , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología
15.
Biochemistry ; 59(48): 4581-4590, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33213137

RESUMEN

Chito-oligosaccharides (CHOS) are homo- or hetero-oligomers of N-acetylglucosamine (GlcNAc, A) and d-glucosamine (GlcN, D). Production of well-defined CHOS-mixtures, or even pure CHOS, with specific lengths and sugar compositions, is of great interest since these oligosaccharides have interesting bioactivities. While direct chemical synthesis of CHOS is not straightforward, chemo-enzymatic approaches have shown some promise. We have used engineered glycoside hydrolases to catalyze oligomerization of activated DA building blocks through transglycosylation reactions. The building blocks were generated from readily available (GlcNAc)2-para-nitrophenol through deacetylation of the nonreducing end sugar with a recombinantly expressed deacetylase from Aspergillus niger (AnCDA9). This approach, using a previously described hyper-transglycosylating variant of ChiA from Serratia marcescens (SmChiA) and a newly generated transglycosylating variant of Chitinase D from Serratia proteamaculans (SpChiD), led to production of CHOS containing up to ten alternating D and A units [(DA)2, (DA)3, (DA)4, and (DA)5]. The most abundant compounds were purified and characterized. Finally, we demonstrate that (DA)3 generated in this study may serve as a specific inhibitor of the human chitotriosidase. Inhibition of this enzyme has been suggested as a therapeutic strategy against systemic sclerosis.


Asunto(s)
Quitina/análogos & derivados , Oligosacáridos/biosíntesis , Oligosacáridos/síntesis química , Acetilglucosamina/química , Aspergillus niger/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Quitina/biosíntesis , Quitina/síntesis química , Quitinasas/genética , Quitinasas/metabolismo , Cristalografía por Rayos X , Glucosamina/química , Hexosaminidasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligosacáridos/química , Serratia/enzimología , Serratia/genética , Serratia marcescens/enzimología , Serratia marcescens/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
J Biol Chem ; 294(5): 1541-1553, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30514763

RESUMEN

Toxoplasma gondii is a ubiquitous, obligate intracellular eukaryotic parasite that causes congenital birth defects, disease in immunocompromised individuals, and blindness. Protein glycosylation plays an important role in the infectivity and evasion of immune responses of many eukaryotic parasites and is also of great relevance to vaccine design. Here we demonstrate that micronemal protein 2 (MIC2), a motility-associated adhesin of T. gondii, has highly glycosylated thrombospondin repeat (TSR) domains. Using affinity-purified MIC2 and MS/MS analysis along with enzymatic digestion assays, we observed that at least seven C-linked and three O-linked glycosylation sites exist within MIC2, with >95% occupancy at these O-glycosylation sites. We found that addition of O-glycans to MIC2 is mediated by a protein O-fucosyltransferase 2 homolog (TgPOFUT2) encoded by the TGGT1_273550 gene. Even though POFUT2 homologs are important for stabilizing motility-associated adhesins and for host infection in other apicomplexan parasites, loss of TgPOFUT2 in T. gondii had only a modest impact on MIC2 levels and the wider parasite proteome. Consistent with this, both plaque formation and tachyzoite invasion were broadly similar in the presence or absence of TgPOFUT2. These findings indicate that TgPOFUT2 O-glycosylates MIC2 and that this glycan, in contrast to previous findings in another study, is dispensable in T. gondii tachyzoites and for T. gondii infectivity.


Asunto(s)
Fibroblastos/parasitología , Fucosiltransferasas/metabolismo , Interacciones Huésped-Parásitos , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Glicosilación , Humanos , Proteoma/análisis , Toxoplasmosis/metabolismo
17.
Biochem Soc Trans ; 48(3): 1287-1295, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32510142

RESUMEN

The ongoing COVID-19 pandemic, caused by SARS-CoV-2, has pushed the health systems of many countries to breaking point and precipitated social distancing measures that have crippled economic activities across the globe. A return to normality is unlikely until effective therapeutics and a vaccine are available. The immediacy of this problem suggests that drug strategies should focus on repurposing approved drugs or late-stage clinical candidates, as these have the shortest path to use in the clinic. Here, we review and discuss the role of host cell N-glycosylation pathways to virus replication and the drugs available to disrupt these pathways. In particular, we make a case for evaluation of the well-tolerated drugs miglitol, celgosivir and especially miglustat for the treatment of COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/química , Infecciones por Coronavirus/metabolismo , Reposicionamiento de Medicamentos/métodos , Inhibidores de Glicósido Hidrolasas/farmacología , Neumonía Viral/metabolismo , Antivirales/uso terapéutico , COVID-19 , Calnexina/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Glicosilación/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Pliegue de Proteína/efectos de los fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos , alfa-Glucosidasas/metabolismo
18.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32444469

RESUMEN

Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Metilglucósidos/metabolismo , Proteoma/metabolismo , Rhizobium leguminosarum/metabolismo , Proteómica
19.
Org Biomol Chem ; 18(4): 675-686, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31894821

RESUMEN

The sulfolipid sulfoquinovosyl diacylglycerol (SQDG) and its headgroup, the sulfosugar sulfoquinovose (SQ), are estimated to harbour up to half of all organosulfur in the biosphere. SQ is liberated from SQDG and related glycosides by the action of sulfoquinovosidases (SQases). We report a 10-step synthesis of SQDG that we apply to the preparation of saturated and unsaturated lipoforms. We also report an expeditious synthesis of SQ and (13C6)SQ, and X-ray crystal structures of sodium and potassium salts of SQ. Finally, we report the synthesis of a fluorogenic SQase substrate, methylumbelliferyl α-d-sulfoquinovoside, and examination of its cleavage kinetics by two recombinant SQases. These compounds will assist in dissecting the role of sulfoglycolysis in the biogeochemical sulfur cycle and understanding the molecular basis of sulfoglycolysis.

20.
J Org Chem ; 84(5): 2901-2910, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30742766

RESUMEN

Sulfoglycolysis is a metabolic pathway dedicated to the catabolism of the sulfosugar sulfoquinovose (SQ) into smaller organosulfur fragments. An estimated 10 billion tonnes of SQ fluxes through sulfoglycolysis pathways each year, making it a significant aspect of the biogeochemical sulfur cycle. Delineating the molecular details of sulfoglycolysis requires authentic samples of the various metabolites in these pathways. To this end, we have established chemical and chemoenzymatic methods for the synthesis of the key organosulfur metabolites sulfoquinovosylglycerol, SQ (also in 13C6-labeled form), sulfofructose, sulfofructose-1-phosphate, sulfolactaldehyde, and 2,3-dihydroxypropanesulfonate, as well as an improved route to the chromogenic sulfoquinovosidase substrate 4-nitrophenyl α-sulfoquinovoside.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA