Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 48(D1): D642-D649, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31586406

RESUMEN

The YEASTRACT+ information system (http://YEASTRACT-PLUS.org/) is a wide-scope tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in yeasts of biotechnological or human health relevance. YEASTRACT+ is a new portal that integrates the previously existing YEASTRACT (http://www.yeastract.com/) and PathoYeastract (http://pathoyeastract.org/) databases and introduces the NCYeastract (Non-Conventional Yeastract) database (http://ncyeastract.org/), focused on the so-called non-conventional yeasts. The information in the YEASTRACT database, focused on Saccharomyces cerevisiae, was updated. PathoYeastract was extended to include two additional pathogenic yeast species: Candida parapsilosis and Candida tropicalis. Furthermore, the NCYeastract database was created, including five biotechnologically relevant yeast species: Zygosaccharomyces baillii, Kluyveromyces lactis, Kluyveromyces marxianus, Yarrowia lipolytica and Komagataella phaffii. The YEASTRACT+ portal gathers 289 706 unique documented regulatory associations between transcription factors (TF) and target genes and 420 DNA binding sites, considering 247 TFs from 10 yeast species. YEASTRACT+ continues to make available tools for the prediction of the TFs involved in the regulation of gene/genomic expression. In this release, these tools were upgraded to enable predictions based on orthologous regulatory associations described for other yeast species, including two new tools for cross-species transcription regulation comparison, based on multi-species promoter and TF regulatory network analyses.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Genómica , Levaduras/genética , Sitios de Unión , Candida tropicalis/genética , Redes Reguladoras de Genes , Kluyveromyces/genética , Filogenia , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Programas Informáticos , Especificidad de la Especie , Factores de Transcripción/genética , Transcripción Genética , Yarrowia/genética , Zygosaccharomyces/genética
2.
BMC Bioinformatics ; 22(1): 399, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376148

RESUMEN

Numerous genomes are sequenced and made available to the community through the NCBI portal. However, and, unlike what happens for gene function annotation, annotation of promoter sequences and the underlying prediction of regulatory associations is mostly unavailable, severely limiting the ability to interpret genome sequences in a functional genomics perspective. Here we present an approach where one can download a genome of interest from NCBI in the GenBank Flat File (.gbff) format and, with a minimum set of commands, have all the information parsed, organized and made available through the platform web interface. Also, the new genomes are compared with a given genome of reference in search of homologous genes, shared regulatory elements and predicted transcription associations. We present this approach within the context of Community YEASTRACT of the YEASTRACT + portal, thus benefiting from immediate access to all the comparative genomics queries offered in the YEASTRACT + portal. Besides the yeast community, other communities can install the platform independently, without any constraints. In this work, we exemplify the usefulness of the presented tool, within Community YEASTRACT, in constructing a dedicated database and analysing the genome of the highly promising oleaginous red yeast species Rhodotorula toruloides currently poorly studied at the genome and transcriptome levels and with limited genome editing tools. Regulatory prediction is based on the conservation of promoter sequences and available regulatory networks. The case-study examined is focused on the Haa1 transcription factor-a key regulator of yeast resistance to acetic acid, an important inhibitor of industrial bioconversion of lignocellulosic hydrolysates. The new tool described here led to the prediction of a RtHaa1 regulon with expected impact in the optimization of R. toruloides robustness for lignocellulosic and pectin-rich residue biorefinery processes.


Asunto(s)
Regulón , Levaduras , Anotación de Secuencia Molecular , Rhodotorula , Factores de Transcripción , Levaduras/genética
3.
Environ Microbiol ; 23(1): 69-80, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32985771

RESUMEN

Among the mechanisms by which yeast overcomes multiple stresses is the expression of genes encoding ATP-binding cassette (ABC) transporters required for resistance to a wide range of toxic compounds. These substrates may include weak acids, alcohols, agricultural pesticides, polyamines, metal cations, as in the case of Pdr18. This pleotropic drug resistance transporter was previously proposed to transport ergosterol at the plasma membrane (PM) level contributing to the maintenance of PM lipid organization and reduced diffusional permeation induced by lipophilic compounds. The present work reports a novel phenotype associated with the putative drug/xenobiotic-efflux-pump transporter Pdr18: the resistance to heat shock and to long-term growth at supra-optimal temperatures. Cultivation at 40°C was demonstrated to lead to higher PM permeabilization of a pdr18Δ cell population with the PDR18 gene deleted compared with the parental strain population, as indicated by flow cytometry analysis of propidium iodide stained cells. Cells of pdr18Δ grown at 40°C also exhibited increased transcription levels from genes of the ergosterol biosynthetic pathway, compared with parental cells. However, this adaptive response at 40°C was not enough to maintain PM physiological ergosterol levels in the population lacking the Pdr18 transporter and free ergosterol precursors accumulate in the deletion mutant cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Ergosterol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Membrana Celular/química , Membrana Celular/genética , Calor , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Termotolerancia
4.
FEMS Yeast Res ; 21(6)2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34427650

RESUMEN

Responding to the recent interest of the yeast research community in non-Saccharomyces cerevisiae species of biotechnological relevance, the N.C.Yeastract (http://yeastract-plus.org/ncyeastract/) was associated to YEASTRACT + (http://yeastract-plus.org/). The YEASTRACT + portal is a curated repository of known regulatory associations between transcription factors (TFs) and target genes in yeasts. N.C.Yeastract gathers all published regulatory associations and TF-binding sites for Komagataellaphaffii (formerly Pichia pastoris), the oleaginous yeast Yarrowia lipolytica, the lactose fermenting species Kluyveromyces lactis and Kluyveromyces marxianus, and the remarkably weak acid-tolerant food spoilage yeast Zygosaccharomyces bailii. The objective of this review paper is to advertise the update of the existing information since the release of N.C.Yeastract in 2019, and to raise awareness in the community about its potential to help the day-to-day work on these species, exploring all the information available in the global YEASTRACT + portal. Using simple and widely used examples, a guided exploitation is offered for several tools: (i) inference of orthologous genes; (ii) search for putative TF binding sites and (iii) inter-species comparison of transcription regulatory networks and prediction of TF-regulated networks based on documented regulatory associations available in YEASTRACT + for well-studied species. The usage potentialities of the new CommunityYeastract platform by the yeast community are also discussed.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Yarrowia , Bases de Datos Genéticas , Genómica , Saccharomyces cerevisiae , Levaduras/genética
5.
Nucleic Acids Res ; 46(D1): D348-D353, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29036684

RESUMEN

The YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT-www.yeastract.com) information system has been, for 11 years, a key tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in Saccharomyces cerevisiae. Since its last update in June 2017, YEASTRACT includes approximately 163000 regulatory associations between transcription factors (TF) and target genes in S. cerevisiae, based on more than 1600 bibliographic references; it also includes 247 specific DNA binding consensus recognized by 113 TFs. This release of the YEASTRACT database provides new visualization tools to visualize each regulatory network in an interactive fashion, enabling the user to select and observe subsets of the network such as: (i) considering only DNA binding evidence or both DNA binding and expression evidence; (ii) considering only either positive or negative regulatory associations; or (iii) considering only one set of related environmental conditions. A further tool to observe TF regulons is also offered, enabling a clear-cut understanding of the exact meaning of the available data. We believe that with this new version, YEASTRACT will improve its role as an open web resource instrumental for Yeast Biologists and Systems Biology researchers.


Asunto(s)
Bases de Datos Genéticas , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Transcripción Genética , Regulón , Factores de Transcripción/metabolismo
6.
Prog Mol Subcell Biol ; 58: 1-35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911887

RESUMEN

The contemporary approach of physiological genomics is vital in providing the indispensable holistic understanding of the complexity of the molecular targets, signalling pathways and molecular mechanisms underlying the responses and tolerance to stress, a topic of paramount importance in biology and biotechnology. This chapter focuses on the toxicity and tolerance to relevant stresses in the cell factory and eukaryotic model yeast Saccharomyces cerevisiae. Emphasis is given to the function and regulation of multidrug/multixenobiotic resistance (MDR/MXR) transporters. Although these transporters have been considered drug/xenobiotic efflux pumps, the exact mechanism of their involvement in multistress resistance is still open to debate, as highlighted in this chapter. Given the conservation of transport mechanisms from S. cerevisiae to less accessible eukaryotes such as plants, this chapter also provides a proof of concept that validates the relevance of the exploitation of the experimental yeast model to uncover the function of novel MDR/MXR transporters in the plant model Arabidopsis thaliana. This knowledge can be explored for guiding the rational design of more robust yeast strains with improved performance for industrial biotechnology, for overcoming and controlling the deleterious activities of spoiling yeasts in the food industry, for developing efficient strategies to improve crop productivity in agricultural biotechnology.


Asunto(s)
Farmacorresistencia Fúngica Múltiple/genética , Genómica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos
7.
Appl Microbiol Biotechnol ; 101(12): 5005-5018, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28409382

RESUMEN

The action of benzoic acid in the food and beverage industries is compromised by the ability of spoilage yeasts to cope with this food preservative. Benzoic acid occurs naturally in many plants and is an intermediate compound in the biosynthesis of many secondary metabolites. The understanding of the mechanisms underlying the response and resistance to benzoic acid stress in the eukaryotic model yeast is thus crucial to design more suitable strategies to deal with this toxic lipophilic weak acid. In this study, the Saccharomyces cerevisiae multidrug transporter Tpo1 was demonstrated to confer resistance to benzoic acid. TPO1 transcript levels were shown to be up-regulated in yeast cells suddenly exposed to this stress agent. This up-regulation is under the control of the Gcn4 and Stp1 transcription factors, involved in the response to amino acid availability, but not under the regulation of the multidrug resistance transcription factors Pdr1 and Pdr3 that have binding sites in TPO1 promoter region. Benzoic acid stress was further shown to affect the intracellular pool of amino acids and polyamines. The observed decrease in the concentration of these nitrogenous compounds, registered upon benzoic acid stress exposure, was not found to be dependent on Tpo1, although the limitation of yeast cells on nitrogenous compounds was found to activate Tpo1 expression. Altogether, the results described in this study suggest that Tpo1 is one of the key players standing in the crossroad between benzoic acid stress response and tolerance and the control of the intracellular concentration of nitrogenous compounds. Also, results can be useful to guide the design of more efficient preservation strategies and the biotechnological synthesis of benzoic acid or benzoic acid-derived compounds.


Asunto(s)
Antiportadores/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ácido Benzoico/farmacología , Proteínas Nucleares/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Aminoácidos , Antiportadores/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sitios de Unión , Farmacorresistencia Fúngica Múltiple/genética , Tolerancia a Medicamentos , Conservantes de Alimentos , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas de Transporte de Catión Orgánico/genética , Poliaminas , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores , Factores de Transcripción/genética , Activación Transcripcional , Regulación hacia Arriba
8.
Microb Cell Fact ; 11: 98, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22839110

RESUMEN

BACKGROUND: The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. RESULTS: A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased ³H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. CONCLUSIONS: PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio-ethanol production.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Etanol/metabolismo , Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba , Transportadoras de Casetes de Unión a ATP/genética , Fermentación , Regulación Fúngica de la Expresión Génica , Hipergravedad , Microbiología Industrial , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Curr Opin Biotechnol ; 74: 32-41, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34781103

RESUMEN

Among the mechanisms used by yeasts to overcome the deleterious effects of chemical and other environmental stresses is the activity of plasma membrane efflux pumps involved in multidrug resistance (MDR), a role on the focus of intensive research for years in pathogenic yeasts. More recently, these active transporters belonging to the MFS (Drug: H+ antiporters) or the ABC superfamily have been involved in resistance to xenobiotic compounds and in the transport of substrates with a clear physiological role. This review paper focuses on these putative efflux pumps concerning their tolerance phenotypes towards bioprocess-specific multiple stress factors, expression levels, physiological roles, and mechanisms by which they may lead to multistress resistance. Their association with the increased secretion of metabolites and other bioproducts and in the development of more robust superior strains for Yeast Chemical Biotechnology is highlighted.


Asunto(s)
Proteínas de Transporte de Membrana , Saccharomyces cerevisiae , Transporte Biológico , Membrana Celular , Saccharomyces cerevisiae/metabolismo
10.
J Fungi (Basel) ; 8(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205858

RESUMEN

Acetic acid is a major inhibitory compound in several industrial bioprocesses, in particular in lignocellulosic yeast biorefineries. Cell envelope remodeling, involving cell wall and plasma membrane composition, structure and function, is among the mechanisms behind yeast adaptation and tolerance to stress. Pdr18 is a plasma membrane ABC transporter of the pleiotropic drug resistance family and a reported determinant of acetic acid tolerance mediating ergosterol transport. This study provides evidence for the impact of Pdr18 expression in yeast cell wall during adaptation to acetic acid stress. The time-course of acetic-acid-induced transcriptional activation of cell wall biosynthetic genes (FKS1, BGL2, CHS3, GAS1) and of increased cell wall stiffness and cell wall polysaccharide content in cells with the PDR18 deleted, compared to parental cells, is reported. Despite the robust and more intense adaptive response of the pdr18Δ population, the stress-induced increase of cell wall resistance to lyticase activity was below parental strain levels, and the duration of the period required for intracellular pH recovery from acidification and growth resumption was higher in the less tolerant pdr18Δ population. The ergosterol content, critical for plasma membrane stabilization, suffered a drastic reduction in the first hour of cultivation under acetic acid stress, especially in pdr18Δ cells. Results revealed a crosstalk between plasma membrane ergosterol content and cell wall biophysical properties, suggesting a coordinated response to counteract the deleterious effects of acetic acid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA