Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Arthritis Rheum ; 58(2): 467-74, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18240244

RESUMEN

OBJECTIVE: Monolayer expansion of human articular chondrocytes (HACs) is known to result in progressive dedifferentiation of the chondrocytes and loss of their stable cartilage formation capacity in vivo. For an optimal outcome of chondrocyte-based repair strategies, HACs capable of ectopic cartilage formation may be required. This study was undertaken to identify secreted candidate molecules, in supernatants of cultured HACs, that could serve as predictors of the ectopic cartilage formation capacity of cells. METHODS: Standardized medium supernatants (n = 5 knee cartilage samples) of freshly isolated HACs (PD0) and of HACs expanded for 2 or 6 population doublings (PD2 and PD6, respectively) were screened by a multiplexed immunoassay for 15 distinct interleukins, 8 matrix metalloproteinases (MMPs), and 11 miscellaneous soluble factors. Cartilage differentiation markers such as cartilage oligomeric matrix protein and YKL-40 were determined by enzyme-linked immunosorbent assay. HACs from each culture were subcutaneously transplanted into SCID mice, and the capacity of the chondrocytes to form stable cartilage was examined histologically 4 weeks later. RESULTS: Whereas freshly isolated (PD0) HACs generated stable ectopic cartilage that was positive for type II collagen, none of the cell transplants at PD6 formed cartilaginous matrix. Loss of the ectopic cartilage formation capacity between PD0 and PD6 correlated with a drop in the secretion of MMP-3 to <10% of initial levels, whereas changes in the other investigated molecules were not predictive. Chondrocytes with MMP-3 levels of >or=20% of initial levels synthesized cartilaginous matrix, whereas those with low MMP-3 levels (<10% of initial levels) at PD2 failed to regenerate ectopic cartilage. CONCLUSION: Loss of the capacity for stable ectopic cartilage formation in the course of HAC dedifferentiation can be predicted by determining the relative levels of MMP-3, demonstrating that standardized culture supernatants can be used for quality control of chondrocytes dedicated for cell therapeutic approaches.


Asunto(s)
Cartílago Articular , Condrocitos/enzimología , Condrocitos/trasplante , Coristoma/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Trasplante de Células/normas , Células Cultivadas , Niño , Condrocitos/citología , Coristoma/patología , Humanos , Ratones , Ratones SCID , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Control de Calidad
2.
J Cell Physiol ; 211(3): 682-91, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17238135

RESUMEN

Recent interest has focused on mesenchymal stem cells (MSC) for tissue engineering and regenerative therapy of cartilage defects. MSC originating from adipose tissue (ATSC) are attractive as they are easily available and abundant. They have similar properties like bone marrow derived MSC (BMSC), except for a reduced chondrogenic potential under standard culture conditions driven by TGFbeta. Aim of this study was to search for possible differences explaining the reduced differentiation capacity of ATSC and to eliminate it by adaptation of induction protocols. Expanded MSC were analyzed for their growth factor and related receptor repertoire and ATSC spheroid cultures were supplemented with BMP-2,-4,-6,-7, TGFbeta, FGFa, FGFb, IGF-1, and PTHrP alone or in combination with TGFbeta. In contrast to BMSC, ATSC showed reduced expression of BMP-2, -4, and -6 mRNA and did not express TGFbeta-receptor-I protein. Consistent with this, increased concentrations of TGFbeta did not improve chondrogenesis of ATSC. BMP6 treatment induced TGFbeta-receptor-I expression and combined application of TGFbeta and BMP-6 eliminated the reduced chondrogenic potential of ATSC inducing a gene expression profile similar to differentiated BMSC. Like in BMSC, chondrogenesis of ATSC was associated with hypertrophy according to premature collagen Type X expression, upregulation of alkaline-phosphatase activity and in vivo calcification of spheroids after ectopic transplantation in SCID mice. In conclusion, a distinct BMP and TGFbeta-receptor repertoire may explain the reduced chondrogenic capacity of ATSC in vitro, which could be compensated by exogenous application of lacking factors. Further studies should now be directed to induce chondrogenesis in the absence of hypertrophy.


Asunto(s)
Receptores de Activinas Tipo I/genética , Tejido Adiposo/citología , Proteínas Morfogenéticas Óseas/genética , Condrocitos/citología , Receptores de Factores de Crecimiento Transformadores beta/genética , Células del Estroma/citología , Animales , Células de la Médula Ósea , Proteína Morfogenética Ósea 2 , Proteína Morfogenética Ósea 4 , Proteína Morfogenética Ósea 6 , Proteínas Morfogenéticas Óseas/farmacología , Calcificación Fisiológica/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/fisiología , Expresión Génica/fisiología , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Ratones SCID , Proteínas Serina-Treonina Quinasas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Esferoides Celulares , Células del Estroma/fisiología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacología
3.
Arthritis Rheum ; 54(10): 3254-66, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17009260

RESUMEN

OBJECTIVE: Functional suitability and phenotypic stability of ectopic transplants are crucial factors in the clinical application of mesenchymal stem cells (MSCs) for articular cartilage repair, and might require a stringent control of chondrogenic differentiation. This study evaluated whether human bone marrow-derived MSCs adopt natural differentiation stages during induction of chondrogenesis in vitro, and whether they can form ectopic stable cartilage that is resistant to vascular invasion and calcification in vivo. METHODS: During in vitro chondrogenesis of MSCs, the expression of 44 cartilage-, stem cell-, and bone-related genes and the deposition of aggrecan and types II and X collagen were determined. Similarly treated, expanded articular chondrocytes served as controls. MSC pellets were allowed to differentiate in chondrogenic medium for 3-7 weeks, after which the chondrocytes were implanted subcutaneously into SCID mice; after 4 weeks in vivo, samples were evaluated by histology. RESULTS: The 3-stage chondrogenic differentiation cascade initiated in MSCs was primarily characterized by sequential up-regulation of common cartilage genes. Premature induction of hypertrophy-related molecules (type X collagen and matrix metalloproteinase 13) occurred before production of type II collagen and was followed by up-regulation of alkaline phosphatase activity. In contrast, hypertrophy-associated genes were not induced in chondrocyte controls. Whereas control chondrocyte pellets resisted calcification and vascular invasion in vivo, most MSC pellets mineralized, in spite of persisting proteoglycan and type II collagen content. CONCLUSION: An unnatural pathway of differentiation to chondrocyte-like cells was induced in MSCs by common in vitro protocols. MSC pellets transplanted to ectopic sites in SCID mice underwent alterations related to endochondral ossification rather than adopting a stable chondrogenic phenotype. Further studies are needed to evaluate whether a more stringent control of MSC differentiation to chondrocytes can be achieved during cartilage repair in a natural joint environment.


Asunto(s)
Calcinosis/patología , Cartílago Articular/irrigación sanguínea , Cartílago Articular/patología , Condrocitos/patología , Coristoma/patología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/patología , Adulto , Anciano , Agrecanos/genética , Agrecanos/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Calcinosis/genética , Calcinosis/metabolismo , Cartílago Articular/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/trasplante , Coristoma/genética , Coristoma/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Femenino , Humanos , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/fisiopatología , Masculino , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones SCID , Persona de Mediana Edad , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA