Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Metab Eng ; 56: 85-96, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31499175

RESUMEN

Isoprenol (3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals. Biological production of isoprenol via the mevalonate pathway has been developed and optimized extensively in Escherichia coli, but high ATP requirements and isopentenyl diphosphate (IPP) toxicity have made it difficult to achieve high titer, yield, and large-scale production. To overcome these limitations, an IPP-bypass pathway was previously developed using the promiscuous activity of diphosphomevalonate decarboxylase, and enabled the production of isoprenol at a comparable yield and titer to the original pathway. In this study, we optimized this pathway, substantially improving isoprenol production. A titer of 3.7 g/L (0.14 g isoprenol per g glucose) was achieved in batch conditions using minimal medium by pathway optimization, and a further optimization of the fed-batch fermentation process enabled an isoprenol titer of 10.8 g/L (yield of 0.105 g/g and maximum productivity of 0.157 g L-1 h-1), which is the highest reported titer for this compound. The substantial increase in isoprenol titer via the IPP-bypass pathway in this study will facilitate progress toward commercialization.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Escherichia coli , Hemiterpenos , Ingeniería Metabólica , Ácido Mevalónico/metabolismo , Compuestos Organofosforados , Carboxiliasas/genética , Carboxiliasas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemiterpenos/genética , Hemiterpenos/metabolismo , Compuestos Organofosforados/metabolismo
2.
Biotechnol Bioeng ; 115(5): 1161-1172, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29411856

RESUMEN

We previously engineered Escherichia coli to overproduce medium- to long-chain saturated and monounsaturated methyl ketones, which could potentially be applied as diesel fuel blending agents or in the flavor and fragrance industry. Recent efforts at strain optimization have focused on cofactor balance, as fatty acid-derived pathways face the systematic metabolic challenge of net NADPH consumption (in large part, resulting from the key fatty acid biosynthetic enzyme FabG [ß-ketoacyl-ACP reductase]) and net NADH production. In this study, we attempted to mitigate cofactor imbalance by heterologously expressing NADH-dependent, rather than NADPH-dependent, versions of FabG identified in previous studies. Of the four NADH-dependent versions of FabG tested in our previously best-reported methyl ketone-producing strain (EGS1895), the version from Acholeplasma laidlawii (Al_FabG) showed the greatest increase in methyl ketone yield in shake flasks (35-75% higher than for an RFP negative-control strain, depending on sugar loading). An improved strain (EGS2920) attained methyl ketone titers during fed-batch fermentation of 5.4 ± 0.5 g/L, which were, on average, ca. 40% greater than those for the base strain (EGS1895) under fermentation conditions optimized in this study. Shotgun proteomic data for strains EGS2920 and EGS1895 during fed-batch fermentation were consistent with the goal of alleviating NADPH limitation through expression of Al_FabG. For example, relative to strain EGS1895, strain EGS2920 significantly upregulated glucose-6-phosphate isomerase (directing flux into glycolysis rather than the NADPH-producing pentose phosphate pathway) and downregulated MaeB (a NADP+ -dependent malate dehydrogenase). Overall, the results suggest that heterologous expression of NADH-dependent FabG in E. coli may improve sustained production of fatty acid-derived renewable fuels and chemicals.


Asunto(s)
Oxidorreductasas de Alcohol/biosíntesis , Coenzimas/metabolismo , Escherichia coli/metabolismo , Cetonas/metabolismo , NAD/metabolismo , Proteínas Recombinantes/biosíntesis , Acholeplasma laidlawii/enzimología , Acholeplasma laidlawii/genética , Oxidorreductasas de Alcohol/genética , Escherichia coli/enzimología , Escherichia coli/genética , Ácidos Grasos/metabolismo , Fermentación , Expresión Génica , Proteínas Recombinantes/genética
3.
Microb Cell Fact ; 17(1): 12, 2018 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-29374483

RESUMEN

BACKGROUND: We previously developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the increased efficiency resulting from simultaneous, rather than the native sequential (diauxic), utilization of glucose and xylose. RESULTS: In this study, genetic manipulations were performed to alleviate carbon catabolite repression in our most efficient methyl ketone-producing strain. A strain engineered for constitutive expression of xylF and xylA (involved in xylose transport and metabolism) showed synchronized glucose and xylose consumption rates. However, this newly acquired capability came at the expense of methyl ketone titer, which decreased fivefold. Further efforts were made to improve methyl ketone production in this strain, and we found that two strategies were effective at enhancing methyl ketone titer: (1) chromosomal deletion of pgi (glucose-6-phosphate isomerase) to increase intracellular NADPH supply and (2) downregulation of CRP (cAMP receptor protein) expression by replacement of the native RBS with an RBS chosen based upon mutant library screening results. Combining these strategies resulted in the most favorable overall phenotypes for simultaneous glucose-xylose consumption without compromising methyl ketone titer at both 1 and 2% total sugar concentrations in shake flasks. CONCLUSIONS: This work demonstrated a strategy for engineering simultaneous utilization of C6 and C5 sugars in E. coli without sacrificing production of fatty acid-derived compounds.


Asunto(s)
Disacáridos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cetonas/metabolismo , Técnicas de Cultivo Celular por Lotes , Represión Catabólica , Sistema Enzimático del Citocromo P-450/deficiencia , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Escherichia coli/genética , Fermentación , Glucosa/metabolismo , Oxidorreductasas Intramoleculares/deficiencia , Oxidorreductasas Intramoleculares/genética , Cetonas/análisis , Ingeniería Metabólica/métodos , Proteínas/genética , Xilosa/metabolismo
4.
Metab Eng ; 26: 67-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25241399

RESUMEN

We previously reported development of a metabolic pathway in Escherichia coli for overproduction of medium-chain methyl ketones (MK), which are relevant to the biofuel and flavor-and-fragrance industries. This MK pathway was a re-engineered version of ß-oxidation designed to overproduce ß-ketoacyl-CoAs and involved overexpression of the fadM thioesterase gene. Here, we document metabolic engineering modifications that have led to a MK titer of 3.4 g/L after ~45 h of fed-batch glucose fermentation and attainment of 40% of the maximum theoretical yield (the best values reported to date for MK). Modifications included balancing overexpression of fadR and fadD to increase fatty acid flux into the pathway, consolidation of the pathway from two plasmids into one, codon optimization, and knocking out key acetate production pathways. In vitro studies confirmed that a decarboxylase is not required to convert ß-keto acids into MK and that FadM is promiscuous and can hydrolyze several CoA-thioester pathway intermediates.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Mejoramiento Genético/métodos , Hexanonas/metabolismo , Ingeniería Metabólica/métodos , Transducción de Señal/fisiología
5.
Appl Environ Microbiol ; 80(2): 497-505, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24212572

RESUMEN

Major efforts in bioenergy research have focused on producing fuels that can directly replace petroleum-derived gasoline and diesel fuel through metabolic engineering of microbial fatty acid biosynthetic pathways. Typically, growth and pathway induction are conducted under aerobic conditions, but for operational efficiency in an industrial context, anaerobic culture conditions would be preferred to obviate the need to maintain specific dissolved oxygen concentrations and to maximize the proportion of reducing equivalents directed to biofuel biosynthesis rather than ATP production. A major concern with fermentative growth conditions is elevated NADH levels, which can adversely affect cell physiology. The purpose of this study was to identify homologs of Escherichia coli FabG, an essential reductase involved in fatty acid biosynthesis, that display a higher preference for NADH than for NADPH as a cofactor. Four potential NADH-dependent FabG variants were identified through bioinformatic analyses supported by crystallographic structure determination (1.3- to 2.0-Å resolution). In vitro assays of cofactor (NADH/NADPH) preference in the four variants showed up to ≈ 35-fold preference for NADH, which was observed with the Cupriavidus taiwanensis FabG variant. In addition, FabG homologs were overexpressed in fatty acid- and methyl ketone-overproducing E. coli host strains under anaerobic conditions, and the C. taiwanensis variant led to a 60% higher free fatty acid titer and 75% higher methyl ketone titer relative to the titers of the control strains. With further engineering, this work could serve as a starting point for establishing a microbial host strain for production of fatty acid-derived biofuels (e.g., methyl ketones) under anaerobic conditions.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos/biosíntesis , NAD/metabolismo , Proteínas Recombinantes/metabolismo , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Anaerobiosis , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Microbiología Industrial/métodos , Datos de Secuencia Molecular , NADP/metabolismo , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido
6.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1320-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22993086

RESUMEN

Micrococcus luteus is a Gram-positive bacterium that produces iso- and anteiso-branched alkenes by the head-to-head condensation of fatty-acid thioesters [coenzyme A (CoA) or acyl carrier protein (ACP)]; this activity is of interest for the production of advanced biofuels. In an effort to better understand the control of the formation of branched fatty acids in M. luteus, the structure of FabH (MlFabH) was determined. FabH, or ß-ketoacyl-ACP synthase III, catalyzes the initial step of fatty-acid biosynthesis: the condensation of malonyl-ACP with an acyl-CoA. Analysis of the MlFabH structure provides insights into its substrate selectivity with regard to length and branching of the acyl-CoA. The most structurally divergent region of FabH is the L9 loop region located at the dimer interface, which is involved in the formation of the acyl-binding channel and thus limits the substrate-channel size. The residue Phe336, which is positioned near the catalytic triad, appears to play a major role in branched-substrate selectivity. In addition to structural studies of MlFabH, transcriptional studies of M. luteus were also performed, focusing on the increase in the ratio of anteiso:iso-branched alkenes that was observed during the transition from early to late stationary phase. Gene-expression microarray analysis identified two genes involved in leucine and isoleucine metabolism that may explain this transition.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/química , Proteínas Bacterianas/química , Ácidos Grasos/química , Micrococcus luteus/enzimología , Acetil-CoA C-Acetiltransferasa/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Ácidos Grasos/clasificación , Ácidos Grasos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Micrococcus luteus/metabolismo , Especificidad por Sustrato
7.
Appl Environ Microbiol ; 78(1): 70-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22038610

RESUMEN

We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C11 to C15 (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of ß-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the ß-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in ß-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.


Asunto(s)
Biocombustibles , Escherichia coli/metabolismo , Cetonas/metabolismo , Ingeniería Metabólica/métodos , Acilcoenzima A/metabolismo , Cromatografía Liquida , Coenzima A Ligasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Cetonas/aislamiento & purificación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tioléster Hidrolasas/metabolismo
8.
J Bacteriol ; 192(3): 841-60, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19948807

RESUMEN

Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to beta-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome.


Asunto(s)
Actinobacteria/genética , Genoma Bacteriano/genética , Micrococcus luteus/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Genéticos
9.
Appl Environ Microbiol ; 76(4): 1212-23, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20038703

RESUMEN

Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during fatty acid biosynthesis.


Asunto(s)
Alquenos/metabolismo , Genes Bacterianos , Micrococcus luteus/genética , Micrococcus luteus/metabolismo , Alquenos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biocombustibles , Cartilla de ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos/biosíntesis , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Redes y Vías Metabólicas , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Plásmidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray
10.
ChemSusChem ; 12(18): 4313-4322, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31278853

RESUMEN

The conversion of municipal solid waste (MSW) and lignocellulosic biomass blends to methyl ketones (MKs) was investigated by using bioderived ionic liquid (bionic liquid)-based hydrolysates followed by fermentation with an engineered Escherichia coli strain. The hydrolysates were produced by a one-pot process using six types of MSW-biomass blends, choline-based bionic liquids, and commercial enzymes. Based on the sugar yields, one blend (corn stover/MSW=95:5, w/w) and two bionic liquids {cholinium lysinate ([Ch][Lys]) and cholinium aspartate ([Ch]2 [Asp])} were selected for scale-up studies. Maximum yields of 82.3 % glucose and 54.4 % xylose were obtained from the selected blend in the scale-up studies (6 L), which was comparable with 83.6 % glucose and 52.8 % xylose obtained at a smaller scale (0.2 L). Comparable or higher yields of medium-chain (C11 -C17 ) MKs were achieved by using the MSW-biomass blend-derived hydrolysates, relative to the sugar controls (glucose and xylose) with similar sugar feeding concentrations. Up to 1145 mg L-1 of MKs was produced by using MSW-biomass-derived hydrolysates, and the MK titer decreased to 300 mg L-1 when the bionic-liquid concentration in the hydrolysate increased from 1 to 2 %, indicative of bionic-liquid inhibition. Technoeconomic analysis was conducted to investigate the economic potential of using the selected MSW-biomass blend as a feedstock to produce MKs.

11.
Artículo en Inglés | MEDLINE | ID: mdl-31388393

RESUMEN

The conversion of biomass to biofuels presents a solution to one of the largest global challenges of our era, climate change. A critical part of this pipeline is the process of breaking down cellulosic sugars from plant matter to be used by microbes containing biosynthetic pathways that produce biofuels or bioproducts. In this inquiry-based course, students complete a research project that isolates cellulase-producing bacteria from samples collected from the environment. After obtaining isolates, the students characterize the production of cellulases. Students then amplify and sequence the 16S rRNA genes of confirmed cellulase producers and use bioinformatic methods to identify the bacterial isolates. Throughout the course, students learn about the process of generating biofuels and bioproducts through the deconstruction of cellulosic biomass to form monosaccharides from the biopolymers in plant matter. The program relies heavily on active learning and enables students to connect microbiology with issues of sustainability. In addition, it provides exposure to basic microbiology, molecular biology, and biotechnology laboratory techniques and concepts. The described activity was initially developed for the Introductory College Level Experience in Microbiology (iCLEM) program, a research-based immersive laboratory course at the US Department of Energy Joint BioEnergy Institute. Originally designed as an accelerated program for high-potential, low-income, high school students (11th-12th grade), this curriculum could also be implemented for undergraduate coursework in a research-intensive laboratory course at a two- or four-year college or university.

12.
J Bacteriol ; 189(24): 8890-900, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17933899

RESUMEN

Horizontal gene transfer events followed by proper regulatory integration of a gene drive rapid evolution of bacterial pathogens. A key event in the evolution of the highly virulent plague bacterium Yersinia pestis was the acquisition of plasmid pPCP1, which carries the plasminogen activator gene, pla. This promoted the bubonic form of the disease by increasing bacterial dissemination from flea bite sites and incidentally enhanced replication in respiratory airways during pneumonic infection. We determined that expression of pla is controlled by the global regulator cyclic AMP (cAMP) receptor protein (Crp). This transcription factor is well conserved among distantly related bacteria, where it acts as a soluble receptor for the ubiquitous signaling molecule cAMP and controls a global network of metabolic and stress-protective genes. Crp has a similar physiological role in Y. pestis since loss of its function resulted in an inability to metabolize a variety of nonglucose substrates. Activation of pla expression requires a transcription activation element of the pla promoter that serves as a Crp binding site. Crp interaction with this site was demonstrated to occur only in the presence of cAMP. Alteration of the Crp binding site nucleotide sequence prevented in vitro formation of Crp-DNA complexes and inhibited in vivo expression of pla. The placement of pla under direct regulatory control of Crp highlights how highly adapted pathogens integrate laterally acquired genes to coordinate virulence factor expression with global gene networks to maintain homeostasis through the infectious life cycle.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteína Receptora de AMP Cíclico/fisiología , Regulación Bacteriana de la Expresión Génica , Activadores Plasminogénicos/biosíntesis , Yersinia pestis/genética , Sitios de Unión/genética , AMP Cíclico/metabolismo , Huella de ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Mutagénesis Insercional , Regiones Promotoras Genéticas , Unión Proteica , Yersinia pestis/metabolismo
14.
Metab Eng Commun ; 3: 211-215, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29468125

RESUMEN

Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO2. A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of Pkan or one of two native T. denitrificans promoters. The relative strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.

15.
J Bacteriol ; 187(14): 4890-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15995204

RESUMEN

Hierarchical control ensures that facultative bacteria preferentially use the available respiratory electron acceptor with the most positive standard redox potential. Thus, nitrate is used before other electron acceptors such as fumarate for anaerobic respiration. Nitrate regulation is mediated by the NarX-NarL two-component system, which activates the transcription of operons encoding nitrate respiration enzymes and represses the transcription of operons for other anaerobic respiratory enzymes, including enzymes involved in fumarate respiration. These are fumarate reductase (encoded by the frdABCD operon), fumarase B, which generates fumarate from malate, and the DcuB permease for fumarate, malate, and aspartate. The transcription of the corresponding structural genes is activated by the DcuS-DcuR two-component system in response to fumarate or its dicarboxylate precursors. We report results from preliminary transcription microarray experiments that revealed two previously unknown members of the NarL regulon: the aspA gene encoding aspartate-ammonia lyase, which generates fumarate; and the dcuSR operon encoding the dicarboxylate-responsive regulatory system. We measured beta-galactosidase expression from monocopy aspA-lacZ, frdA-lacZ, and dcuS-lacZ operon fusions in response to added nitrate and fumarate and with respect to the dcuR and narL genotypes. Nitrate, acting through the NarX-NarL regulatory system, repressed the transcription of all three operons. Only frdA-lacZ expression, however, was responsive to added fumarate or a dcuR(+) genotype. Phospho-NarL protein protected operator sites in the aspA and dcuS promoter regions from DNase I cleavage in vitro. The overall results are consistent with the hypothesis that nitrate represses frdA operon transcription not only directly, by repressing frdA promoter activity, but also indirectly, by repressing dcuS promoter activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitratos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Anaerobiosis , Secuencia de Bases , Citratos/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Ácidos Dicarboxílicos/metabolismo , Escherichia coli K12/metabolismo , Genotipo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón , Plásmidos/genética
17.
Proc Natl Acad Sci U S A ; 99(26): 17025-30, 2002 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-12482953

RESUMEN

Antibiotics such as erythromycin and rifampicin, at low concentrations, alter global bacterial transcription patterns as measured by the stimulation or inhibition of a variety of promoter-lux reporter constructs in a Salmonella typhimurium library. Analysis of a 6,500-clone library indicated that as many as 5% of the promoters may be affected, comprising genes for a variety of functions, as well as a significant fraction of genes with no known function. Studies of a selection of the reporter clones showed that stimulation varied depending on the nature of the antibiotic, the promoter, and what culture medium was used; the response differed on solid as compared with liquid media. Transcription was markedly reduced in antibiotic-resistant hosts, but the presence of mutations deficient in stress responses such as SOS or universal stress did not prevent antibiotic-induced modulation. The results show that small molecules may have contrasting effects on bacteria depending on their concentration: either the modulation of bacterial metabolism by altering transcription patterns or the inhibition of growth by the inhibition of specific target functions. Both activities could play important roles in the regulation of microbial communities. These studies indicate that the detection of pharmaceutically useful natural product inhibitors could be effectively achieved by measuring activation of transcription at low concentrations in high-throughput assays using appropriate bacterial promoter-reporter constructs.


Asunto(s)
Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Genes Reporteros , Regiones Promotoras Genéticas , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA