Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626762

RESUMEN

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Asunto(s)
Mosaicismo , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Humanos , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Cerebelo/metabolismo , Cerebelo/patología , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Ataxina-1/genética
2.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37197783

RESUMEN

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Neurodegenerativas , Humanos , ARN Polimerasa III/genética , Patrón de Herencia , ARN Polimerasas Dirigidas por ADN/genética
3.
Am J Hum Genet ; 107(6): 1170-1177, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33232677

RESUMEN

KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery.


Asunto(s)
Discapacidades del Desarrollo/genética , Variación Genética , Histona Demetilasas con Dominio de Jumonji/genética , Malformaciones del Sistema Nervioso/genética , Animales , Encéfalo/diagnóstico por imagen , Epigénesis Genética , Femenino , Heterocigoto , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Metilación , Ratones , Procesamiento Proteico-Postraduccional , Convulsiones/genética , Transducción de Señal
4.
Genet Med ; 25(2): 100327, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36422518

RESUMEN

PURPOSE: CAG/CAA repeat expansions in TBP>49 are responsible for spinocerebellar ataxia (SCA) type 17 (SCA17). We previously detected cosegregation of STUB1 variants causing SCA48 with intermediate alleles of TBP in 2 families. This cosegregation questions the existence of SCA48 as a monogenic disease. METHODS: We systematically sequenced TBP repeats in 34 probands of dominant ataxia families with STUB1 variants. In addition, we searched for pathogenic STUB1 variants in probands with expanded alleles of TBP>49 (n = 2) or intermediate alleles of TBP≥40 (n = 47). RESULTS: STUB1 variants were found in half of the TBP40-49 cohort. Mirroring this finding, TBP40-49 alleles were detected in 40% of STUB1 probands. The longer the TBP repeat length, the more likely the occurrence of cognitive impairment (P = .0129) and the faster the disease progression until death (P = .0003). Importantly, 13 STUB1 probands presenting with the full SCA48 clinical phenotype had normal TBP37-39 alleles, excluding digenic inheritance as the sole mode. CONCLUSION: We show that intermediate TBP40-49 alleles act as disease modifiers of SCA48 rather than a STUB1/TBP digenic model. This distinction from what has been proposed before has crucial consequences for genetic counseling in SCA48.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxia Cerebelosa/genética , Fenotipo , Alelos , Expansión de Repetición de Trinucleótido/genética , Ubiquitina-Proteína Ligasas/genética
5.
Mov Disord ; 38(11): 2103-2115, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605305

RESUMEN

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by mutations in the C19orf12 gene. MPAN typically appears in the first two decades of life and presents with progressive dystonia-parkinsonism, lower motor neuron signs, optic atrophy, and abnormal iron deposits predominantly in the basal ganglia. MPAN, initially considered as a strictly autosomal recessive disease (AR), turned out to be also dominantly inherited (AD). OBJECTIVES: Our aim was to better characterize the clinical, molecular, and functional spectra associated with such dominant pathogenic heterozygous C19orf12 variants. METHODS: We collected clinical, imaging, and molecular information of eight individuals from four AD-MPAN families and obtained brain neuropathology results for one. Functional studies, focused on energy and iron metabolism, were conducted on fibroblasts from AD-MPAN patients, AR-MPAN patients, and controls. RESULTS: We identified four heterozygous C19orf12 variants in eight AD-MPAN patients. Two of them carrying the familial variant in mosaic displayed an atypical late-onset phenotype. Fibroblasts from AD-MPAN showed more severe alterations of iron storage metabolism and autophagy compared to AR-MPAN cells. CONCLUSION: Our data add strong evidence of the realness of AD-MPAN with identification of novel monoallelic C19orf12 variants, including at the mosaic state. This has implications in diagnosis procedures. We also expand the phenotypic spectrum of MPAN to late onset atypical presentations. Finally, we demonstrate for the first time more drastic abnormalities of iron metabolism and autophagy in AD-MPAN than in AR-MPAN. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Mosaicismo , Trastornos del Movimiento , Humanos , Proteínas Mitocondriales/genética , Hierro/metabolismo , Mutación/genética , Proteínas de la Membrana/genética , Fenotipo
6.
BMC Neurol ; 22(1): 53, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151251

RESUMEN

BACKGROUND: VPS13D is a large ubiquitin-binding protein playing an essential role in mitophagy by regulating mitochondrial fission. Recently, VPS13D biallelic pathogenic variants have been reported in patients displaying variable neurological phenotypes, with an autosomic recessive inheritance. The objectives of the study were to determine the genetic etiology of a patient with early onset sporadic progressive spastic ataxia, and to investigate the pathogenicity of VPS13D variants through functional studies on patient's skin fibroblasts. CASE PRESENTATION: We report the case of a 51-year-old patient with spastic ataxia, with an acute onset of the disease at age 7. Walking difficulties slowly worsened over time, with the use of a wheelchair since age 26. We have used trio-based whole-exome sequencing (WES) to identify genes associated with spastic ataxia. The impact of the identified variants on mitochondrial function was assessed in patient's fibroblasts by imaging mitochondrial network and measuring level of individual OXPHOS complex subunits. Compound heterozygous variants were identified in VPS13D: c.946C > T, p.Arg316* and c.12416C > T, p.(Ala4139Val). Primary fibroblasts obtained from this patient revealed an altered mitochondrial morphology, and a decrease in levels of proteins from complex I, III and IV. CONCLUSIONS: Our findings confirmed implication of VPS13D in spastic ataxia and provided further support for mitochondrial defects in patient's skin fibroblasts with VPS13D variants. This report of long-term follow up showed a slowly progressive course of the spastic paraplegia with cerebellar features. Furthermore, the performed functional studies could be used as biomarker helping diagnosis of VPS13D-related neurological disorders when molecular results are uneasy to interpret.


Asunto(s)
Atrofia Óptica , Paraplejía Espástica Hereditaria , Ataxias Espinocerebelosas , Adulto , Niño , Humanos , Discapacidad Intelectual , Persona de Mediana Edad , Espasticidad Muscular , Mutación , Linaje , Fenotipo , Proteínas , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Secuenciación del Exoma
7.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34415322

RESUMEN

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Asunto(s)
Alelos , Variación Genética/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Antígenos de Histocompatibilidad Menor/genética , Trastornos del Neurodesarrollo/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Leucocitos Mononucleares/fisiología , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje
8.
Neurogenetics ; 22(1): 71-79, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486633

RESUMEN

Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.


Asunto(s)
Calpaína/genética , Discapacidad Intelectual/genética , Espasticidad Muscular/genética , Mutación/genética , Atrofia Óptica/genética , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Adulto , Edad de Inicio , Ataxia Cerebelosa/genética , Niño , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Espasticidad Muscular/diagnóstico , Atrofia Óptica/diagnóstico , Linaje , Fenotipo , Ataxias Espinocerebelosas/diagnóstico , Adulto Joven
9.
Ann Neurol ; 87(4): 609-617, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31995250

RESUMEN

OBJECTIVE: GM2 gangliosidoses are lysosomal diseases due to biallelic mutations in the HEXA (Tay-Sachs disease [TS]) or HEXB (Sandhoff disease [SD]) genes, with subsequent low hexosaminidase(s) activity. Most patients have childhood onset, but some experience the first symptoms during adolescence/adulthood. This study aims to clarify the natural history of adult patients with GM2 gangliosidosis. METHODS: We retrospectively described 12 patients from a French cohort and 45 patients from the literature. RESULTS: We observed 4 typical presentations: (1) lower motoneuron disorder responsible for proximal lower limb weakness that subsequently expanded to the upper limbs, (2) cerebellar ataxia, (3) psychosis and/or severe mood disorder (only in the TS patients), and (4) a complex phenotype mixing the above 3 manifestations. The psoas was the first and most affected muscle in the lower limbs, whereas the triceps and interosseous were predominantly involved in the upper limbs. A longitudinal study of compound motor action potentials showed a progressive decrease in all nerves, with different kinetics. Sensory potentials were sometimes abnormally low, mainly in the SD patients. The main brain magnetic resonance imaging feature was cerebellar atrophy, even in patients without cerebellar symptoms. The prognosis was mainly related to gait disorder, as we showed that beyond 20 years of disease evolution, half of the patients were wheelchair users. INTERPRETATION: Improved knowledge of GM2 gangliosidosis in adults will help clinicians achieve correct diagnoses and better inform patients on the evolution and prognosis. It may also contribute to defining proper outcome measures when testing emerging therapies. ANN NEUROL 2020;87:609-617.


Asunto(s)
Enfermedad de Sandhoff/fisiopatología , Enfermedad de Tay-Sachs/fisiopatología , Potenciales de Acción , Adolescente , Adulto , Edad de Inicio , Anciano , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Niño , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Estudios de Cohortes , Trastornos de Deglución/fisiopatología , Progresión de la Enfermedad , Disartria/fisiopatología , Distonía/fisiopatología , Electrodiagnóstico , Electromiografía , Femenino , Ataxia de la Marcha/fisiopatología , Gangliosidosis GM2/diagnóstico por imagen , Gangliosidosis GM2/fisiopatología , Gangliosidosis GM2/psicología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/fisiopatología , Espasticidad Muscular/fisiopatología , Debilidad Muscular/fisiopatología , Conducción Nerviosa , Enfermedad de Sandhoff/diagnóstico por imagen , Enfermedad de Sandhoff/psicología , Enfermedad de Tay-Sachs/diagnóstico por imagen , Enfermedad de Tay-Sachs/psicología , Adulto Joven
10.
Blood ; 133(16): 1778-1788, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30602618

RESUMEN

Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbß3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbß3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbß3 interaction.


Asunto(s)
Filaminas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/etiología , Femenino , Fibrinógeno/metabolismo , Filaminas/genética , Humanos , Megacariocitos/química , Megacariocitos/patología , Mutación , Unión Proteica/fisiología , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
11.
J Med Genet ; 57(7): 466-474, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277047

RESUMEN

PURPOSE: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.


Asunto(s)
Anomalías Craneofaciales/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Síndrome de Marfan/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Niño , Ensamble y Desensamble de Cromatina , Anomalías Craneofaciales/patología , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/patología , Masculino , Síndrome de Marfan/patología , Discapacidad Intelectual Ligada al Cromosoma X/patología , Persona de Mediana Edad , Mutación/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Secuenciación del Exoma , Adulto Joven
12.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227665

RESUMEN

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Proteínas de Unión al ARN/genética , Trombocitopenia/genética , Deformidades Congénitas de las Extremidades Superiores/genética , Regiones no Traducidas 5' , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 1 , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Radio (Anatomía)/patología , Adulto Joven
13.
Curr Opin Neurol ; 33(4): 462-473, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32657887

RESUMEN

PURPOSE OF REVIEW: The diagnosis of neurodegeneration with brain iron accumulation (NBIA) typically associates various extrapyramidal and pyramidal features, cognitive and psychiatric symptoms with bilateral hypointensities in the globus pallidus on iron-sensitive magnetic resonance images, reflecting the alteration of iron homeostasis in this area. This article details the contribution of MRI in the diagnosis by summarizing and comparing MRI patterns of the various NBIA subtypes. RECENT FINDINGS: MRI almost always shows characteristic changes combining iron accumulation and additional neuroimaging abnormalities. Iron-sensitive MRI shows iron deposition in the basal ganglia, particularly in bilateral globus pallidus and substantia nigra. Other regions may be affected depending on the NBIA subtypes including the cerebellum and dentate nucleus, the midbrain, the striatum, the thalamus, and the cortex. Atrophy of the cerebellum, brainstem, corpus callosum and cortex, and white matter changes may be associated and worsen with disease duration. Iron deposition can be quantified using R2 or quantitative susceptibility mapping. SUMMARY: Recent MRI advances allow depicting differences between the various subtypes of NBIA, providing a useful analytical framework for clinicians. Standardization of protocols for image acquisition and analysis may help improving the detection of imaging changes associated with NBIA and the quantification of iron deposition.


Asunto(s)
Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Hierro/análisis , Neuroimagen/métodos , Encéfalo/patología , Química Encefálica , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética/métodos
14.
Genet Med ; 22(11): 1851-1862, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32713943

RESUMEN

PURPOSE: Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48). METHODS: We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance. RESULTS: STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects. CONCLUSION: Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.


Asunto(s)
Ataxia Cerebelosa , Disfunción Cognitiva , Ataxias Espinocerebelosas , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Ataxia , Ataxia Cerebelosa/genética , Femenino , Humanos , Masculino , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas
15.
Clin Genet ; 97(4): 628-633, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31713837

RESUMEN

Kidney is a highly adenosine triphosphate dependent organ in human body. Healthy and functional mitochondria are essential for normal kidney function. Clinical and genetic variability are the hallmarks of mitochondrial disorders. We report here the involvement of two MT-ND5 pathogenic variants encoding for ND5 subunit of respiratory chain complex I, the m.13513G>A and the m.13514A>G, in adult-onset kidney disease in three unrelated patients. The first patient had myopathy encephalopathy lactic acidosis and stroke syndrome, left ventricular hypertrophy with Wolff-Parkinson-White syndrome and tubulo-interstitial kidney disease. The second presented Leber hereditary optic neuropathy associated with tubulo-interstitial kidney disease. The third presented with an isolated chronic tubulo-interstitial kidney disease. These mutations have never been associated with adulthood mitochondrial nephropathy. These case reports highlight the importance to consider mitochondrial dysfunction in tubulo-interstitial kidney disease.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Riñón/metabolismo , Proteínas Mitocondriales/genética , Nefritis Intersticial/genética , Síndrome de Wolff-Parkinson-White/genética , Adulto , ADN Mitocondrial/genética , Femenino , Humanos , Riñón/patología , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mutación/genética , Nefritis Intersticial/patología , Fenotipo , Síndrome de Wolff-Parkinson-White/patología
16.
Neuropediatrics ; 51(4): 245-250, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32143220

RESUMEN

Cutis laxa is a heterogeneous group of diseases, characterized by abundant and wrinkled skin and a variable degree of intellectual disability. Cutis laxa, autosomal recessive, type IIIA and autosomal dominant 3 syndromes are caused by autosomal recessive or de novo pathogenic variants in ALDH18A1. Autosomal recessive variants are known to lead to the most severe neurological phenotype, and very few patients have been described.We describe a 13-month-old patient with cutis laxa, autosomal recessive, type IIIA, with an extremely severe phenotype, including novel neurological findings. This description enlarges the neurological spectrum associated to cutis laxa, autosomal recessive, type IIIA, and provides an additional description of this syndrome.


Asunto(s)
Cutis Laxo/fisiopatología , Aldehído Deshidrogenasa/genética , Consanguinidad , Cutis Laxo/clasificación , Cutis Laxo/genética , Humanos , Lactante , Masculino
17.
J Med Genet ; 56(8): 499-511, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30910913

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 28 (SCA28) is a dominantly inherited neurodegenerative disease caused by pathogenic variants in AFG3L2. The AFG3L2 protein is a subunit of mitochondrial m-AAA complexes involved in protein quality control. Objective of this study was to determine the molecular mechanisms of SCA28, which has eluded characterisation to date. METHODS: We derived SCA28 patient fibroblasts carrying different pathogenic variants in the AFG3L2 proteolytic domain (missense: the newly identified p.F664S and p.M666T, p.G671R, p.Y689H and a truncating frameshift p.L556fs) and analysed multiple aspects of mitochondrial physiology. As reference of residual m-AAA activity, we included SPAX5 patient fibroblasts with homozygous p.Y616C pathogenic variant, AFG3L2+/- HEK293 T cells by CRISPR/Cas9-genome editing and Afg3l2-/- murine fibroblasts. RESULTS: We found that SCA28 cells carrying missense changes have normal levels of assembled m-AAA complexes, while the cells with a truncating pathogenic variant had only half of this amount. We disclosed inefficient mitochondrial fusion in SCA28 cells caused by increased OPA1 processing operated by hyperactivated OMA1. Notably, we found altered mitochondrial proteostasis to be the trigger of OMA1 activation in SCA28 cells, with pharmacological attenuation of mitochondrial protein synthesis resulting in stabilised levels of OMA1 and OPA1 long forms, which rescued mitochondrial fusion efficiency. Secondary to altered mitochondrial morphology, mitochondrial calcium uptake resulted decreased in SCA28 cells. CONCLUSION: Our data identify the earliest events in SCA28 pathogenesis and open new perspectives for therapy. By identifying similar mitochondrial phenotypes between SCA28 cells and AFG3L2+/- cells, our results support haploinsufficiency as the mechanism for the studied pathogenic variants.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Variación Genética , Haploinsuficiencia , Metaloendopeptidasas/genética , Dominios Proteicos/genética , Estrés Fisiológico/genética , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Calcio/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Unión Proteica , Multimerización de Proteína , Proteolisis , Proteostasis/genética , Activación Transcripcional
18.
J Biol Chem ; 293(32): 12415-12428, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29925593

RESUMEN

Membrane-bound proteinase 3 (PR3m) is the main target antigen of anti-neutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis, a systemic small-vessel vasculitis. Binding of ANCA to PR3m triggers neutrophil activation with the secretion of enzymatically active PR3 and related neutrophil serine proteases, thereby contributing to vascular damage. PR3 and related proteases are activated from pro-forms by the lysosomal cysteine protease cathepsin C (CatC) during neutrophil maturation. We hypothesized that pharmacological inhibition of CatC provides an effective measure to reduce PR3m and therefore has implications as a novel therapeutic approach in granulomatosis with polyangiitis. We first studied neutrophilic PR3 from 24 patients with Papillon-Lefèvre syndrome (PLS), a genetic form of CatC deficiency. PLS neutrophil lysates showed a largely reduced but still detectable (0.5-4%) PR3 activity when compared with healthy control cells. Despite extremely low levels of cellular PR3, the amount of constitutive PR3m expressed on the surface of quiescent neutrophils and the typical bimodal membrane distribution pattern were similar to what was observed in healthy neutrophils. However, following cell activation, there was no significant increase in the total amount of PR3m on PLS neutrophils, whereas the total amount of PR3m on healthy neutrophils was significantly increased. We then explored the effect of pharmacological CatC inhibition on PR3 stability in normal neutrophils using a potent cell-permeable CatC inhibitor and a CD34+ hematopoietic stem cell model. Human CD34+ hematopoietic stem cells were treated with the inhibitor during neutrophil differentiation over 10 days. We observed strong reductions in PR3m, cellular PR3 protein, and proteolytic PR3 activity, whereas neutrophil differentiation was not compromised.


Asunto(s)
Catepsina C/antagonistas & inhibidores , Membrana Celular/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Granulomatosis con Poliangitis/patología , Mieloblastina/metabolismo , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Granulomatosis con Poliangitis/tratamiento farmacológico , Granulomatosis con Poliangitis/genética , Granulomatosis con Poliangitis/metabolismo , Humanos , Masculino , Mieloblastina/genética , Neutrófilos/enzimología , Proteolisis , Adulto Joven
19.
Hum Mol Genet ; 26(4): 674-685, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28007911

RESUMEN

Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.


Asunto(s)
Núcleo Celular , GTP Fosfohidrolasas , Proteínas Asociadas a Microtúbulos , Mitocondrias , Proteínas Mitocondriales , Neuronas/metabolismo , Paraplejía Espástica Hereditaria , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Dinaminas , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/patología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología
20.
Genet Med ; 21(3): 553-563, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29997391

RESUMEN

PURPOSE: To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes. METHODS: Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes. RESULTS: We identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurological phenotype (7 patients); two new candidate genes (2 patients). Despite the consanguinity, 4/20 patients harbored a heterozygous de novo pathogenic variant. CONCLUSION: Singleton exome sequencing in 20 consanguineous CA families led to molecular diagnosis in 80% of cases. This study confirms the genetic heterogeneity of CA and identifies two new candidate genes (PIGS and SKOR2). Our work illustrates the diversity of the pathophysiological pathways in CA, and highlights the pathogenic link between some CA and early infantile epileptic encephalopathies related to the same genes (STXBP1, BRAT1, CACNA1A and CACNA2D2).


Asunto(s)
Ataxia/genética , Ataxia Cerebelosa/genética , Espasmos Infantiles/genética , Adolescente , Ataxia/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Exoma/genética , Femenino , Francia , Heterogeneidad Genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Mutación/genética , Fenotipo , Secuenciación del Exoma/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA