Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616676

RESUMEN

The adoption of computer vision pose estimation approaches, used to identify keypoint locations which are intended to reflect the necessary anatomical landmarks relied upon by biomechanists for musculoskeletal modelling, has gained increasing traction in recent years. This uptake has been further accelerated by keypoint use as inputs into machine learning models used to estimate biomechanical parameters such as ground reaction forces (GRFs) in the absence of instrumentation required for direct measurement. This study first aimed to investigate the keypoint detection rate of three open-source pose estimation models (AlphaPose, BlazePose, and OpenPose) across varying movements, camera views, and trial lengths. Second, this study aimed to assess the suitability and interchangeability of keypoints detected by each pose estimation model when used as inputs into machine learning models for the estimation of GRFs. The keypoint detection rate of BlazePose was distinctly lower than that of AlphaPose and OpenPose. All pose estimation models achieved a high keypoint detection rate at the centre of an image frame and a lower detection rate in the true sagittal plane camera field of view, compared with slightly anteriorly or posteriorly located quasi-sagittal plane camera views. The three-dimensional ground reaction force, instantaneous loading rate, and peak force for running could be estimated using the keypoints of all three pose estimation models. However, only AlphaPose and OpenPose keypoints could be used interchangeably with a machine learning model trained to estimate GRFs based on AlphaPose keypoints resulting in a high estimation accuracy when OpenPose keypoints were used as inputs and vice versa. The findings of this study highlight the need for further evaluation of computer vision-based pose estimation models for application in biomechanical human modelling, and the limitations of machine learning-based GRF estimation models that rely on 2D keypoints. This is of particular relevance given that machine learning models informing athlete monitoring guidelines are being developed for application related to athlete well-being.


Asunto(s)
Movimiento , Carrera , Humanos , Fenómenos Biomecánicos , Fenómenos Mecánicos , Aprendizaje Automático
2.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080981

RESUMEN

To increase the utility of legacy, gold-standard, three-dimensional (3D) motion capture datasets for computer vision-based machine learning applications, this study proposed and validated a method to synthesise two-dimensional (2D) video image frames from historic 3D motion data. We applied the video-based human pose estimation model OpenPose to real (in situ) and synthesised 2D videos and compared anatomical landmark keypoint outputs, with trivial observed differences (2.11−3.49 mm). We further demonstrated the utility of the method in a downstream machine learning use-case in which we trained and then tested the validity of an artificial neural network (ANN) to estimate ground reaction forces (GRFs) using synthesised and real 2D videos. Training an ANN to estimate GRFs using eight OpenPose keypoints derived from synthesised 2D videos resulted in accurate waveform GRF estimations (r > 0.9; nRMSE < 14%). When compared with using the smaller number of real videos only, accuracy was improved by adding the synthetic views and enlarging the dataset. The results highlight the utility of the developed approach to enlarge small 2D video datasets, or to create 2D video images to accompany 3D motion capture datasets to make them accessible for machine learning applications.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Movimiento (Física) , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA