Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chemistry ; : e202401565, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864572

RESUMEN

We present our findings on the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment. .

2.
Nano Lett ; 23(23): 11211-11218, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38029285

RESUMEN

The two-dimensional electron system (2DES) located at the surface of strontium titanate (STO) and at several other STO-based interfaces has been an established platform for the study of novel physical phenomena since its discovery. Here we report how the interfacing of STO and tetracyanoquinodimethane (TCNQ) results in a charge transfer that depletes the number of free carriers at the STO surface, with a strong impact on its electronic structure. Our study paves the way for efficient tuning of the electronic properties, which promises novel applications in the framework of oxide/organic-based electronics.

3.
Angew Chem Int Ed Engl ; 62(46): e202311832, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37743324

RESUMEN

Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.

4.
Phys Chem Chem Phys ; 24(21): 12719-12744, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583960

RESUMEN

In this Perspective we present a comprehensive study of the multiple reaction products of metal-free porphyrins (2H-Ps) in contact with the rutile TiO2(110) surface. In the absence of peripheral functionalization with specific linkers, the porphyrin adsorption is driven by the coordination of the two pyrrolic nitrogen atoms of the macrocycle to two consecutive oxygen atoms of the protruding Obr rows via hydrogen bonding. This chemical interaction favours the iminic nitrogen uptake of hydrogen from near surface layers at room temperature, thus yielding a stable acidic porphyrin (4H-P). In addition, a mild annealing (∼100 °C) triggers the incorporation of a Ti atom in the porphyrin macrocycle (self-metalation). We recently demonstrated that such a low temperature reaction is driven by a Lewis base iminic attack, which lowers the energy barriers for the outdiffusion of Ti interstitial atoms (Tiint) [Kremer et al., Appl. Surf. Sci., 2021, 564, 150403]. In the monolayer (ML) range, the porphyrin adsorption site, corresponding to a TiO-TPP configuration, is extremely stable and tetraphenyl-porphyrins (TPPs) may even undergo conformational distortion (flattening) by partial cyclo-dehydrogenation, while remaining anchored to the O rows up to 450 °C [Lovat et al., Nanoscale, 2017, 9, 11694]. Here we show that, upon self-metalation, isolated molecules at low coverage may jump atop the rows of five-fold coordinated Ti atoms (Ti5f). This configuration is associated with the formation of a new coordination complex, Ti-O-Ti5f, as determined by comparison with the deposition of pristine titanyl-porphyrin (TiO-TPP) molecules. The newly established Ti-O-Ti5f anchoring configuration is found to be stable also beyond the TPP flattening reaction. The anchoring of TiO-TPP to the Ti5f rows is, however, susceptible to the cross-talk between phenyls of adjacent molecules, which ultimately drives the TiO-TPP temperature evolution in the ML range along the same pathway followed by 2H-TPP.

5.
Angew Chem Int Ed Engl ; 60(49): 25988-25993, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34591358

RESUMEN

Self-metalation is a promising route to include a single metal atom in a tetrapyrrolic macrocycle in organic frameworks supported by metal surfaces. The molecule-surface interaction may provide the charge transfer and the geometric distortion of the molecular plane necessary for metal inclusion. However, at a metal surface the presence of an activation barrier can represent an obstacle that cannot be compensated by a higher substrate temperature without affecting the layer integrity. The formation of the intermediate state can be facilitated in some cases by oxygen pre-adsorption at the supporting metal surface, like in the case of 2H-TPP/Pd(100). In such cases, the activation barrier can be overcome by mild annealing, yielding the formation of desorbing products and of the metalated tetrapyrrole. We show here that the self-metalation of 2H-TPP at the Pd(100) surface can be promoted already at room temperature by the presence of an oxygen gas phase at close-to-ambient conditions via an Eley-Rideal mechanism.

6.
Nanotechnology ; 31(27): 275708, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32235041

RESUMEN

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.

7.
Analyst ; 144(13): 4100-4110, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31172149

RESUMEN

An array of five sensors, based on carbon nanotubes (CNT) functionalized with nanoparticles of Au, TiO2, ITO, and Si has been fabricated and exposed to a selected series of target gas molecules (NH3, NO2, H2S, H2O, benzene, ethanol, acetone, 2-propanol, sodium hypochlorite, and several combinations of two gases). The results of principal component analysis (PCA) of the experimental data show that this array of sensors is able to detect different target gas and to discriminate each molecule in the 2D PCA parameters space. In particular, the possibility to include in the array a humidity sensor significantly increases the capability to discriminate the response to volatile organic compounds (VOCs), even though VOCs usually react with CNTs less than NO2 or NH3. This leads to an improvement in selectivity that could meet the requirements for gas detection applications in the field of environmental monitoring and breathomics, where sensors are exposed to a variety of different molecules and where the humidity can severely affect the overall response of the sensor. Finally, we demonstrate that the ability to test multiple sensors simultaneously can reveal a specific sensor sensitivity, addressing the best functionalization choice to improve the response of new sensors based on decorated CNT layers. In particular, our study shows the better capability of the ITO-decorated sensor to detect H2S and benzene.

8.
Nano Lett ; 16(6): 3409-14, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27010705

RESUMEN

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

9.
Chemistry ; 22(41): 14672-7, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27555424

RESUMEN

Herein the formation of water molecules in the intermediate step of the redox reaction of porphyrins self-metalation on O/Cu(111) is demonstrated. Photoemission measurements show that the temperature on which porphyrins pick-up a substrate metal atom on O/Cu(111) is reduced by about 185±15 K with respect to the pure Cu(111). DFT calculations clearly indicate that the formation of a water molecule is less expensive than the formation of H2 on the O/Cu(111) substrate and, in some cases, it can be also exothermic.

10.
Nanotechnology ; 27(14): 145605, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26916977

RESUMEN

A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

11.
Proc Natl Acad Sci U S A ; 110(13): 4917-22, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479603

RESUMEN

Solar-to-fuel energy conversion relies on the invention of efficient catalysts enabling water oxidation through low-energy pathways. Our aerobic life is based on this strategy, mastered by the natural Photosystem II enzyme, using a tetranuclear Mn-oxo complex as oxygen evolving center. Within artificial devices, water can be oxidized efficiently on tailored metal-oxide surfaces such as RuO2. The quest for catalyst optimization in vitro is plagued by the elusive description of the active sites on bulk oxides. Although molecular mimics of the natural catalyst have been proposed, they generally suffer from oxidative degradation under multiturnover regime. Here we investigate a nano-sized Ru4-polyoxometalate standing as an efficient artificial catalyst featuring a totally inorganic molecular structure with enhanced stability. Experimental and computational evidence reported herein indicates that this is a unique molecular species mimicking oxygenic RuO2 surfaces. Ru4-polyoxometalate bridges the gap between homogeneous and heterogeneous water oxidation catalysis, leading to a breakthrough system. Density functional theory calculations show that the catalytic efficiency stems from the optimal distribution of the free energy cost to form reaction intermediates, in analogy with metal-oxide catalysts, thus providing a unifying picture for the two realms of water oxidation catalysis. These correlations among the mechanism of reaction, thermodynamic efficiency, and local structure of the active sites provide the key guidelines for the rational design of superior molecular catalysts and composite materials designed with a bottom-up approach and atomic control.

12.
Sensors (Basel) ; 16(5)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27213387

RESUMEN

Multi-walled carbon nanotubes (CNTs) have been grown in situ on a SiO 2 substrate and used as gas sensors. For this purpose, the voltage response of the CNTs as a function of time has been used to detect H 2 and CO 2 at various concentrations by supplying a constant current to the system. The analysis of both adsorptions and desorptions curves has revealed two different exponential behaviours for each curve. The study of the characteristic times, obtained from the fitting of the data, has allowed us to identify separately chemisorption and physisorption processes on the CNTs.

13.
Nanoscale ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895745

RESUMEN

Coordination polymers may be synthesized by linear bridging ligands to metal ions with conventional chemistry methods (e.g. in solution). Such complexes can be hardly brought onto a substrate with the chemical, spatial and geometrical homogeneity required for device integration. Instead, we follow an in situ synthesis approach, where the anchoring points are provided by a monolayer of metal(II)-tetraphenylporphyrin (M-TPP, M = Cu, Zn, Co) grown in vacuum on the rutile-TiO2(110) surface. We probed the metal affinity to axial coordination by further deposition of symmetric dipyridyl-naphthalenediimide (DPNDI). By NEXAFS linear polarization dichroism, we show that DPNDI stands up on Zn- and Co-TPP thanks to axial coordination, whereas it lies down on the substrate for Cu-TPP. Calculations for a model pyridine ligand predict strong binding to Zn and Co cations, whose interaction with the O anions underneath is disrupted by surface trans effect. The weaker interactions between pyridine and Cu-TPP are then overcome by the strong attraction between TiO2 and DPNDI. The binding sites exposed by the homeotropic alignment of the ditopic DPNDI ligand on Zn- and Co-TPP are the foundations to grow coordination polymers preserving the lateral coherence of the basal layer.

14.
Analyst ; 138(24): 7392-9, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24171188

RESUMEN

The possibility of using novel architectures based on carbon nanotubes (CNTs) for a realistic monitoring of the air quality in an urban environment requires the capability to monitor concentrations of polluting gases in the low-ppb range. This limit has been so far virtually neglected, as most of the testing of new ammonia gas sensor devices based on CNTs is carried out above the ppm limit. In this paper, we present single-wall carbon nanotube (SWCNT) chemiresistor gas sensors operating at room temperature, displaying an enhanced sensitivity to NH3. Ammonia concentrations in air as low as 20 ppb have been measured, and a detection limit of 3 ppb is demonstrated, which is in the full range of the average NH3 concentration in an urban environment and well below the sensitivities so far reported for pristine, non-functionalized SWCNTs operating at room temperature. In addition to careful preparation of the SWCNT layers, through sonication and dielectrophoresis that improved the quality of the CNT bundle layers, the low-ppb limit is also attained by revealing and properly tracking a fast dynamics channel in the desorption process of the polluting gas molecules.

15.
J Chem Phys ; 138(14): 144702, 2013 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24981539

RESUMEN

Due to the growing interest in the ferromagnetic properties of Fe-octaethylporphyrins (Fe-OEP) for applications in spintronics, methods to produce stable Fe-porphyrins with no Cl atoms are highly demanded. Here, we demonstrate the formation of Fe-OEP layers on Ag(111) single crystal by the ultra high vacuum in situ metalation of the free-base 2H-2,3,7,8,12,13,17,18-octaethylporphyrin (2H-OEP) molecules. The metalation proceeds exactly as in the case of 2H-5,10,15,20-tetraphenylporphyrin (2H-TPP) on the same substrate. An extensive surface characterization by means of X-ray photoemission spectroscopy, valence band photoemission, and NEXAFS with synchrotron radiation light provides information on molecular conformation and electronic structure in the monolayer and multilayer cases. We demonstrate that the presence of the ethyl groups affects the tilt of the adsorbed molecules, the conformation of the macrocycle, and the polarization screening in multilayers, but has only a minor effect in the metalation process with respect to 2H-TPP.

16.
J Phys Chem B ; 127(13): 3016-3025, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972466

RESUMEN

This work shows how the N 1s photoemission (PE) spectrum of self-associated melamine molecules in aqueous solution has been successfully rationalized using an integrated computational approach encompassing classical metadynamics simulations and quantum calculations based on density functional theory (DFT). The first approach allowed us to describe interacting melamine molecules in explicit waters and to identify dimeric configurations based on π-π and/or H-bonding interactions. Then, N 1s binding energies (BEs) and PE spectra were computed at the DFT level for all structures both in the gas phase and in an implicit solvent. While pure π-stacked dimers show gas-phase PE spectra almost identical to that of the monomer, those of the H-bonded dimers are sensibly affected by NH···NH or NH···NC interactions. Interestingly, the solvation suppresses all of the non-equivalences due to the H-bonds yielding similar PE spectra for all dimers, matching very well our measurements.

17.
Phys Rev Lett ; 109(3): 036102, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861874

RESUMEN

Further insight into the dissociative adsorption of NH3 on Si(001) has been obtained using a combined computational and experimental approach. A novel route leading to the dissociation of the chemisorbed NH3 is proposed, based on H-bonding interactions between the gas phase and the chemisorbed NH3 molecules. Our model, complemented by synchrotron radiation photoelectron spectroscopy measurements, demonstrates that the low temperature dissociation of molecular chemisorbed NH3 is driven by the continuous flux of ammonia molecules from the gas phase.

18.
Chemistry ; 18(40): 12619-23, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22915340

RESUMEN

Metal-dependent conformations: a change in the adaptation of tetraphenylporphyrins (TPPs) on Ag(111) was observed in the presence of a metal ion in the macrocycle. Upon annealing at T>575 K, 2H-TPP molecules increase the overlap of the phenyl π orbitals with the substrate, thus reducing the distance. The presence of Co creates a strong bond between Co dz(2) and the Ag sp states, leaving the porphyrin macrocycle at a larger distance to the surface.

19.
J Environ Monit ; 14(6): 1565-75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22517026

RESUMEN

The present study is focused on the implementation of a novel, low cost, urban grid of nanostructured chemresistor gas sensors for ammonia concentration ([NH(3)]) monitoring, with NH(3) being one of the main precursors of secondary fine particulate. Low-cost chemresistor gas sensors based on carbon nanotubes have been developed, their response to [NH(3)] in the 0.17-5.0 ppm range has been tested, and the devices have been properly calibrated under different relative humidity conditions in the 33-63% range. In order to improve the chemresistor selectivity towards [NH(3)], an Expert System, based on fuzzy logic and genetic algorithms, has been developed to extract the atmospheric [NH(3)] (with a sensitivity of a few ppb) from the output signal of a model chemresistor gas sensor exposed to an NO(2), NO(X) and O(3) gas mixture. The concentration of these pollutants that are known to be the most significant interfering compounds during ammonia detection with carbon nanotube gas sensors has been tracked by the ARPA monitoring network in the city of Milan and the historical dataset collected over one year has been used to train the Expert System.


Asunto(s)
Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Monitoreo del Ambiente/instrumentación , Contaminación del Aire/estadística & datos numéricos , Algoritmos , Ciudades , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/métodos , Lógica Difusa , Italia , Dióxido de Nitrógeno/análisis , Óxidos de Nitrógeno/análisis , Ozono/análisis
20.
Small ; 7(4): 524-30, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21246714

RESUMEN

A facile method is proposed for the deposition of multiwalled carbon nanotube (MWCNT) layers onto microelectrode arrays by means of a microcontact printing technique, leading to the fabrication of MEAs characterized by well defined electrical and morphological properties. Using polydimethyl siloxane stamps, produced from different mold designs, a flexibility of printing is achieved that provides access to microscale, nanostructured electrodes. The thickness of MWCNT layers can be exactly predetermined by evaluating the concentration of the MWCNT solution employed in the process. The electrode morphology is further characterized using laser scanning and scanning electron microscopy. Next, by means of impedance spectroscopy analysis, the MWCNT-electrode contact resistance and MWCNT film resistance is measured, while electrochemical impedance spectroscopy is used to estimate the obtained electrode-electrolyte interface. Structural and electrochemical properties make these electrodes suitable for electrical stimulation and recording of neurons and electrochemical detection of dopamine. MWCNT-functionalized electrodes show the ability to detect micromolar amounts of dopamine with a sensitivity of 19 nA µm(-1) . In combination with their biosensing properties, preliminary electrophysiological measurements show that MWCNT microelectrodes have recording properties superior to those of commercial TiN microelectrodes when detecting neuronal electrical activity under long-term cell-culture conditions. MWCNT-functionalized microelectrode arrays fabricated by microcontact printing represent a versatile and multipurpose platform for cell-culture monitoring.


Asunto(s)
Técnicas Biosensibles/métodos , Microelectrodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Espectroscopía Dieléctrica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA