Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 615(7953): 652-659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890232

RESUMEN

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Asunto(s)
Productos Agrícolas , Diploidia , Variación Genética , Genoma de Planta , Genómica , Fitomejoramiento , Proteínas de Plantas , Vicia faba , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variaciones en el Número de Copia de ADN/genética , ADN Satélite/genética , Amplificación de Genes/genética , Genes de Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Geografía , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinación Genética , Retroelementos/genética , Semillas/anatomía & histología , Semillas/genética , Vicia faba/anatomía & histología , Vicia faba/genética , Vicia faba/metabolismo
2.
Trends Genet ; 36(2): 132-145, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31882191

RESUMEN

The pangenome refers to a collection of genomic sequence found in the entire species or population rather than in a single individual; the sequence can be core, present in all individuals, or accessory (variable or dispensable), found in a subset of individuals only. While pangenomic studies were first undertaken in bacterial species, developments in genome sequencing and assembly approaches have allowed construction of pangenomes for eukaryotic organisms, fungi, plants, and animals, including two large-scale human pangenome projects. Analysis of the these pangenomes revealed key differences, most likely stemming from divergent evolutionary histories, but also surprising similarities.


Asunto(s)
Evolución Biológica , Genoma Bacteriano/genética , Genómica , Plantas/genética , Animales , Bacterias/genética , Humanos , Filogenia
3.
Theor Appl Genet ; 136(5): 113, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071201

RESUMEN

KEY MESSAGE: Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.


Asunto(s)
Brassica napus , Brassica napus/genética , Fitomejoramiento , Vigor Híbrido , Metilación de ADN , Transcriptoma , Perfilación de la Expresión Génica , Semillas/genética , Citosina , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell Rep ; 42(2): 337-354, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36653661

RESUMEN

KEY MESSAGE: The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.


Asunto(s)
Brassica rapa , ARN Largo no Codificante , ARN Largo no Codificante/genética , Transcriptoma/genética , Genómica , Brassica rapa/genética , Polen/genética , Polen/metabolismo , Perfilación de la Expresión Génica
5.
Theor Appl Genet ; 135(4): 1263-1277, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35192007

RESUMEN

KEY MESSAGE: Grain disarticulation in wild progenitor of wheat and barley evolved through a local duplication event followed by neo-functionalization resulting from changes in location of gene expression. One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene duplication.


Asunto(s)
Grano Comestible , Hordeum , Grano Comestible/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hordeum/genética , Polen/genética
6.
Plant Biotechnol J ; 19(12): 2488-2500, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34310022

RESUMEN

Plant genomes demonstrate significant presence/absence variation (PAV) within a species; however, the factors that lead to this variation have not been studied systematically in Brassica across diploids and polyploids. Here, we developed pangenomes of polyploid Brassica napus and its two diploid progenitor genomes B. rapa and B. oleracea to infer how PAV may differ between diploids and polyploids. Modelling of gene loss suggests that loss propensity is primarily associated with transposable elements in the diploids while in B. napus, gene loss propensity is associated with homoeologous recombination. We use these results to gain insights into the different causes of gene loss, both in diploids and following polyploidization, and pave the way for the application of machine learning methods to understanding the underlying biological and physical causes of gene presence/absence.


Asunto(s)
Brassica napus , Brassica , Brassica/genética , Brassica napus/genética , Diploidia , Genoma de Planta/genética , Poliploidía
7.
Funct Integr Genomics ; 20(2): 245-258, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31515641

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is a grain crop grown in the Andes renowned as a highly nutritious plant exhibiting tolerance to abiotic stress such as drought, cold and high salinity. Quinoa grows across a range of latitudes corresponding to differing day lengths, suggesting regional adaptations of flowering regulation. Improved understanding and subsequent modification of the flowering process, including flowering time, ensuring high yields, is one of the key factors behind expansion of cultivation zones and goals of the crop improvement programs worldwide. However, our understanding of the molecular basis of flower initiation and development in quinoa is limited. Here, we use a computational approach to perform genome-wide identification and analysis of 611 orthologues of the Arabidopsis thaliana flowering genes. Conservation of the genes belonging to the photoperiod, gibberellin and autonomous pathways was observed, while orthologues of the key genes found in the vernalisation pathway (FRI, FLC) were absent from the quinoa genome. Our analysis indicated that on average each Arabidopsis flowering gene has two orthologous copies in quinoa. Several genes including orthologues of MIF1, FT and TSF were identified as homologue-rich genes in quinoa. We also identified 459 quinoa-specific genes uniquely expressed in the flower and/or meristem, with no known orthologues in other species. The genes identified provide a resource and framework for further studies of flowering in quinoa and related species. It will serve as valuable resource for plant biologists, crop physiologists and breeders to facilitate further research and establishment of modern breeding programs for quinoa.


Asunto(s)
Chenopodium quinoa/genética , Flores/genética , Genoma de Planta , Arabidopsis/genética , Productos Agrícolas , Sequías , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Meristema , Fotoperiodo , Filogenia , Salinidad
8.
Funct Integr Genomics ; 20(2): 259, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31736011

RESUMEN

The above article was published online with incorrect Fig. 5 legend. The legend for Fig. 4 was repeated in Fig. 5.

9.
Plant Biotechnol J ; 18(9): 1946-1954, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32020732

RESUMEN

Pigeon pea (Cajanus cajan) is an important orphan crop mainly grown by smallholder farmers in India and Africa. Here, we present the first pigeon pea pangenome based on 89 accessions mainly from India and the Philippines, showing that there is significant genetic diversity in Philippine individuals that is not present in Indian individuals. Annotation of variable genes suggests that they are associated with self-fertilization and response to disease. We identified 225 SNPs associated with nine agronomically important traits over three locations and two different time points, with SNPs associated with genes for transcription factors and kinases. These results will lead the way to an improved pigeon pea breeding programme.


Asunto(s)
Cajanus , África , Cajanus/genética , India , Pisum sativum/genética
10.
Plant J ; 96(1): 188-202, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29979827

RESUMEN

Rice is an important cereal crop, being a staple food for over half of the world's population, and sexual reproduction resulting in grain formation underpins global food security. However, despite considerable research efforts, many of the genes, especially long intergenic non-coding RNA (lincRNA) genes, involved in sexual reproduction in rice remain uncharacterized. With an increasing number of public resources becoming available, information from different sources can be combined to perform gene functional annotation. We report the development of MCRiceRepGP, a machine learning framework which integrates heterogeneous evidence and employs multicriteria decision analysis and machine learning to predict coding and lincRNA genes involved in sexual reproduction in rice. The rice genome was reannotated using deep-sequencing transcriptomic data from reproduction-associated tissue/cell types identifying previously unannotated putative protein-coding genes and lincRNAs. MCRiceRepGP was used for genome-wide discovery of sexual reproduction associated coding and lincRNA genes. The protein-coding and lincRNA genes identified have distinct expression profiles, with a large proportion of lincRNAs reaching maximum expression levels in the sperm cells. Some of the genes are potentially linked to male- and female-specific fertility and heat stress tolerance during the reproductive stage. MCRiceRepGP can be used in combination with other genome-wide studies, such as genome-wide association studies, giving greater confidence that the genes identified are associated with the biological process of interest. As more data, especially about mutant plant phenotypes, become available, the power of MCRiceRepGP will grow, providing researchers with a tool to identify candidate genes for future experiments. MCRiceRepGP is available as a web application (http://mcgplannotator.com/MCRiceRepGP/).


Asunto(s)
Genes de Plantas/genética , Aprendizaje Automático , Oryza/genética , Genes de Plantas/fisiología , Genoma de Planta/genética , Genoma de Planta/fisiología , Estudio de Asociación del Genoma Completo , Oryza/fisiología , Reproducción/genética , Reproducción/fisiología , Transcriptoma
11.
Funct Integr Genomics ; 19(3): 515-531, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30618014

RESUMEN

The global climate change-induced abiotic and biotic stresses are predicted to affect crop-growing seasons and crop yield. Heat stress transcription factors (Hsfs) have been suggested to play a significant role in various stress responses. They are an integral part of the signal transduction pathways that operate in response to environmental stresses. Brassica oleracea is one of the agronomical important crop species which consists of cabbage, cauliflower, broccoli, Brussels sprout, kohlrabi and kale. The identification and roles of Hsfs in this important Brassica species are unknown. The availability of whole genome sequence of B. oleracea provides us an opportunity for performing in silico analysis of Hsf genes in B. oleracea. Thirty-five putative genes encoding Hsf proteins were identified and classified into A, B and C classes. Their evolution, physical location, gene structure, domain structure and tissue-specific expression patterns were investigated. Further, a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus highlighted the role of hybridisation and allopolyploidy in the evolution of the largest known Hsf gene family in B. napus. The presence of orthologous gene clusters, found in Brassica species, but not in A. thaliana, suggested that polyploidisation has resulted in the formation of new Brassica-specific orthologous gene clusters. Gene duplication analysis indicated that the evolution of the Hsf gene family was under strong purifying selection in these Brassica species. High-level synteny was observed within the B. napus genome. Conservation of physical location, the similarity of structure and similar expression profiles between the B. napus Hsf genes and the corresponding genes from B. oleracea and B. rapa suggest a high functional similarity between these genes. This study paves the way for further investigation of Hsf genes in improving stress tolerance in B. oleracea. The genes thus identified may be useful for developing crop varieties resilient to the global climate change.


Asunto(s)
Brassica/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Proteínas de Plantas/genética , Brassica/clasificación , Brassica/metabolismo , Evolución Molecular , Genoma de Planta , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Selección Genética
12.
Plant Biotechnol J ; 17(4): 789-800, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30230187

RESUMEN

Brassica oleracea is an important agricultural species encompassing many vegetable crops including cabbage, cauliflower, broccoli and kale; however, it can be susceptible to a variety of fungal diseases such as clubroot, blackleg, leaf spot and downy mildew. Resistance to these diseases is meditated by specific disease resistance genes analogs (RGAs) which are differently distributed across B. oleracea lines. The sequenced reference cultivar does not contain all B. oleracea genes due to gene presence/absence variation between individuals, which makes it necessary to search for RGA candidates in the B. oleracea pangenome. Here we present a comparative analysis of RGA candidates in the pangenome of B. oleracea. We show that the presence of RGA candidates differs between lines and suggests that in B. oleracea, SNPs and presence/absence variation drive RGA diversity using separate mechanisms. We identified 59 RGA candidates linked to Sclerotinia, clubroot, and Fusarium wilt resistance QTL, and these findings have implications for crop breeding in B. oleracea, which may also be applicable in other crops species.


Asunto(s)
Ascomicetos/fisiología , Brassica/genética , Resistencia a la Enfermedad/genética , Fusarium/fisiología , Genoma de Planta/genética , Enfermedades de las Plantas/inmunología , Brassica/inmunología , Brassica/microbiología , Productos Agrícolas , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética
13.
Plant Biotechnol J ; 17(5): 881-892, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30315621

RESUMEN

Sesame (Sesamum indicum L.) is an important oil crop renowned for its high oil content and quality. Recently, genome assemblies for five sesame varieties including two landraces (S. indicum cv. Baizhima and Mishuozhima) and three modern cultivars (S. indicum var. Zhongzhi13, Yuzhi11 and Swetha), have become available providing a rich resource for comparative genomic analyses and gene discovery. Here, we employed a reference-assisted assembly approach to improve the draft assemblies of four of the sesame varieties. We then constructed a sesame pan-genome of 554.05 Mb. The pan-genome contained 26 472 orthologous gene clusters; 15 409 (58.21%) of them were core (present across all five sesame genomes), whereas the remaining 41.79% (11 063) clusters and the 15 890 variety-specific genes were dispensable. Comparisons between varieties suggest that modern cultivars from China and India display significant genomic variation. The gene families unique to the sesame modern cultivars contain genes mainly related to yield and quality, while those unique to the landraces contain genes involved in environmental adaptation. Comparative evolutionary analysis indicates that several genes involved in plant-pathogen interaction and lipid metabolism are under positive selection, which may be associated with sesame environmental adaption and selection for high seed oil content. This study of the sesame pan-genome provides insights into the evolution and genomic characteristics of this important oilseed and constitutes a resource for further sesame crop improvement.


Asunto(s)
Genoma de Planta/genética , Sesamum/genética , Evolución Biológica , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Domesticación , Genes de Plantas , Variación Genética , Familia de Multigenes/genética , Fitomejoramiento
14.
Plant Physiol ; 176(3): 2133-2147, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284742

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are emerging as important regulators of diverse biological processes. However, our understanding of lincRNA abundance and function remains very limited especially for agriculturally important plants. Soybean (Glycine max) is a major legume crop plant providing over a half of global oilseed production. Moreover, soybean can form symbiotic relationships with Rhizobium bacteria to fix atmospheric nitrogen. Soybean has a complex paleopolyploid genome and exhibits many vegetative and floral development complexities. Soybean cultivars have photoperiod requirements restricting its use and productivity. Molecular regulators of these legume-specific developmental processes remain enigmatic. Long noncoding RNAs may play important regulatory roles in soybean growth and development. In this study, over one billion RNA-seq read pairs from 37 samples representing nine tissues were used to discover 6,018 lincRNA loci. The lincRNAs were shorter than protein-coding transcripts and had lower expression levels and more sample specific expression. Few of the loci were found to be conserved in two other legume species (chickpea [Cicer arietinum] and Medicago truncatula), but almost 200 homeologous lincRNAs in the soybean genome were detected. Protein-coding gene-lincRNA coexpression analysis suggested an involvement of lincRNAs in stress response, signal transduction, and developmental processes. Positional analysis of lincRNA loci implicated involvement in transcriptional regulation. lincRNA expression from centromeric regions was observed especially in actively dividing tissues, suggesting possible roles in cell division. Integration of publicly available genome-wide association data with the lincRNA map of the soybean genome uncovered 23 lincRNAs potentially associated with agronomic traits.


Asunto(s)
Redes Reguladoras de Genes , Genoma de Planta , Glycine max/genética , ARN Largo no Codificante , Centrómero/genética , Cromosomas de las Plantas , Cicer/genética , Elementos Transponibles de ADN , Evolución Molecular , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , ARN de Planta , Homología de Secuencia de Ácido Nucleico
15.
Plant J ; 90(5): 1007-1013, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28231383

RESUMEN

There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php.


Asunto(s)
Genoma de Planta/genética , Triticum/genética , Cromosomas de las Plantas/genética , Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética
16.
Plant Biotechnol J ; 16(7): 1265-1274, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29205771

RESUMEN

Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.


Asunto(s)
Brassica napus/genética , Conversión Génica/genética , Genes de Plantas/genética , Diploidia , Eliminación de Gen , Duplicación de Gen , Variación Genética/genética , Genoma de Planta/genética , Carácter Cuantitativo Heredable
17.
J Exp Bot ; 69(15): 3689-3702, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29912443

RESUMEN

Seagrasses are marine angiosperms that live fully submerged in the sea. They evolved from land plant ancestors, with multiple species representing at least three independent return-to-the-sea events. This raises the question of whether these marine angiosperms followed the same adaptation pathway to allow them to live and reproduce under the hostile marine conditions. To compare the basis of marine adaptation between seagrass lineages, we generated genomic data for Halophila ovalis and compared this with recently published genomes for two members of Zosteraceae, as well as genomes of five non-marine plant species (Arabidopsis, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Halophila and Zosteraceae represent two independent seagrass lineages separated by around 30 million years. Genes that were lost or conserved in both lineages were identified. All three species lost genes associated with ethylene and terpenoid biosynthesis, and retained genes related to salinity adaptation, such as those for osmoregulation. In contrast, the loss of the NADH dehydrogenase-like complex is unique to H. ovalis. Through comparison of two independent return-to-the-sea events, this study further describes marine adaptation characteristics common to seagrass families, identifies species-specific gene loss, and provides molecular evidence for convergent evolution in seagrass lineages.


Asunto(s)
Evolución Molecular , Genómica , Hydrocharitaceae/genética , Magnoliopsida/genética , Zosteraceae/genética , Adaptación Fisiológica , Ecosistema , Especificidad de la Especie
18.
Plant Biotechnol J ; 15(12): 1602-1610, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28403535

RESUMEN

As an increasing number of plant genome sequences become available, it is clear that gene content varies between individuals, and the challenge arises to predict the gene content of a species. However, genome comparison is often confounded by variation in assembly and annotation. Differentiating between true gene absence and variation in assembly or annotation is essential for the accurate identification of conserved and variable genes in a species. Here, we present the de novo assembly of the B. napus cultivar Tapidor and comparison with an improved assembly of the Brassica napus cultivar Darmor-bzh. Both cultivars were annotated using the same method to allow comparison of gene content. We identified genes unique to each cultivar and differentiate these from artefacts due to variation in the assembly and annotation. We demonstrate that using a common annotation pipeline can result in different gene predictions, even for closely related cultivars, and repeat regions which collapse during assembly impact whole genome comparison. After accounting for differences in assembly and annotation, we demonstrate that the genome of Darmor-bzh contains a greater number of genes than the genome of Tapidor. Our results are the first step towards comparison of the true differences between B. napus genomes and highlight the potential sources of error in future production of a B. napus pangenome.


Asunto(s)
Genoma de Planta , Brassica napus/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Anotación de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos
19.
Plant Physiol ; 172(1): 272-83, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27373688

RESUMEN

Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Genoma de Planta/genética , Zosteraceae/genética , Organismos Acuáticos/genética , Duplicación de Gen , Ontología de Genes , Genes de Plantas/genética , Anotación de Secuencia Molecular , Océanos y Mares , Proteínas de Plantas/genética , Análisis de Secuencia de ARN
20.
Plant Biotechnol J ; 14(4): 1099-105, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26593040

RESUMEN

As an increasing number of genome sequences become available for a wide range of species, there is a growing understanding that the genome of a single individual is insufficient to represent the gene diversity within a whole species. Many studies examine the sequence diversity within genes, and this allelic variation is an important source of phenotypic variation which can be selected for by man or nature. However, the significant gene presence/absence variation that has been observed within species and the impact of this variation on traits is only now being studied in detail. The sum of the genes for a species is termed the pangenome, and the determination and characterization of the pangenome is a requirement to understand variation within a species. In this review, we explore the current progress in pangenomics as well as methods and approaches for the characterization of pangenomes for a wide range of plant species.


Asunto(s)
Genoma de Planta , Genómica/métodos , Arabidopsis/genética , Glycine max/genética , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA