Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Genet ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411942

RESUMEN

WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.

2.
Environ Res ; 229: 115442, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758916

RESUMEN

Pesticides are a heterogeneous class of chemicals mainly used for the protection of crops from pests. Because of their very widespread use, acute or/and chronic exposure to these chemicals can lead to a plethora of sequelae inflicting diseases, many of which involve the nervous system. Tremor has been associated with pesticide exposure in human and animal studies. This review is aimed at assessing the studies currently available on the association between the various types of pesticides/insecticides and tremor, while also accounting for potential confounding factors. To our knowledge, this is the first coherent review on the subject. After appraising the available evidence, we call for more intensive research on this topic, as well as intonate the need of implementing future preventive measures to protect the exposed populations and to reduce potential disabilities and social drawbacks.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Humanos , Plaguicidas/toxicidad , Temblor/inducido químicamente , Productos Agrícolas
3.
Arch Toxicol ; 97(5): 1299-1318, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933023

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.


Asunto(s)
Metales Pesados , Fosfatidilinositol 3-Quinasas , Humanos , Transducción de Señal , Hipoxia , Metales Pesados/toxicidad , Factor 1 Inducible por Hipoxia/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/farmacología
4.
Arch Toxicol ; 97(5): 1285-1298, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36892595

RESUMEN

The current approach for the risk assessment of chemicals does not account for the complex human real-life exposure scenarios. Exposure to chemical mixtures in everyday life has raised scientific, regulatory, and societal concerns in recent years. Several studies aiming to identify the safety limits of chemical mixtures determined hazardous levels lower than those of separate chemicals. Following these observations, this study built on the standards set by the real-life risk simulation (RLRS) scenario and investigated the effect of long-term exposure (18 months) to a mixture of 13 chemicals (methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, butylparaben, bisphenol A and acacia gum) in adult rats. Animals were divided into four dosing groups [0xNOAEL (control), 0.0025xNOAEL (low dose-LD), 0.01xNOAEL (medium dose-MD) and 0.05xNOAEL (high dose-HD) (mg/kg BW/day)]. After 18 months of exposure, all animals were sacrificed, and their organs were harvested, weighed, and pathologically examined. While organ weight tended to be higher in males than in females, when sex and dose were taken into account, lungs and hearts from female rats had significantly greater weight than that of males. This discrepancy was more obvious in the LD group. Histopathology showed that long-term exposure to the chemical mixture selected for this study caused dose-dependent changes in all examined organs. The main organs that contribute to chemical biotransformation and clearance (liver, kidneys, and lungs) consistently presented histopathological changes following exposure to the chemical mixture. In conclusion, exposure to very low doses (below the NOAEL) of the tested mixture for 18 months induced histopathological lesions and cytotoxic effects in a dose and tissue-dependent manner.


Asunto(s)
Plaguicidas , Masculino , Humanos , Ratas , Femenino , Animales , Nivel sin Efectos Adversos Observados , Ratas Sprague-Dawley , Plaguicidas/toxicidad , Aditivos Alimentarios/toxicidad , Tamaño de los Órganos
5.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373170

RESUMEN

This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO). The toxicity was evaluated as growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species generation changes. The measurement was performed with flow cytometry after 3, 24, 96 h, and 7 days. The biotransformation of nanomaterials was evaluated after 7 days of microalgae cultivation with CNMs by FTIR and Raman spectroscopy. The calculated toxic level (EC50 in mg/L, 96 h) of used CNMs reduced in the following order: CNTs (18.98) > GrO (76.77) > Gr (159.40) > C60 (414.0). Oxidative stress and membrane depolarization were the main toxic action of CNTs and GrO. At the same time, Gr and C60 decreased the toxic action with time and had no negative impact on microalgae after 7 days of exposure even at the concentration of 125 mg/L. Moreover, C60 and Gr after 7 days of contact with microalgae cells obtained structural deformations.


Asunto(s)
Fulerenos , Microalgas , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/toxicidad , Fulerenos/toxicidad , Nanoestructuras/toxicidad , Biotransformación
6.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895164

RESUMEN

Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.


Asunto(s)
Sambucus nigra , Úlcera Gástrica , Animales , Ratas , Antioxidantes/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Frutas/metabolismo , Glutatión/metabolismo , Indometacina/efectos adversos , Indometacina/toxicidad , Inflamación , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Superóxido Dismutasa/metabolismo
7.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298879

RESUMEN

Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.


Asunto(s)
Flavanonas , Flavonas , Lamiaceae , Cromatografía Líquida de Alta Presión/métodos , Polifenoles/química , Flavonas/análisis , Extractos Vegetales/química , Flavonoles/análisis , Espectrometría de Masas en Tándem , Flavanonas/análisis , Lamiaceae/química
8.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903272

RESUMEN

Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50-400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia.


Asunto(s)
Dióxido de Carbono , Maackia , Espectrometría de Masas en Tándem , Polifenoles , Solventes/química , Cromatografía Líquida de Alta Presión , Etanol , Extractos Vegetales/química
9.
Crit Rev Food Sci Nutr ; 62(24): 6535-6548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33938772

RESUMEN

The purpose of this study was to review the possibility of using supercritical CO2 as a green and sustainable technology for microbial inactivation of raw material for further application in the food industry. The history of the development of supercritical CO2 microbial inactivation has been widely described in this article. The fundamental scientific part of the process like mechanism of bactericidal action of CO2 or inactivation of key enzymes were characterized in detail. In summary, this study provides an overview of the latest literature on the use of supercritical carbon dioxide in microbial inactivation of food raw materials and products.


Asunto(s)
Dióxido de Carbono , Conservación de Alimentos , Viabilidad Microbiana
10.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055175

RESUMEN

The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a "Trojan horse effect". Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.


Asunto(s)
Microalgas/crecimiento & desarrollo , Óxidos/toxicidad , Sulfuros/toxicidad , Contaminantes Químicos del Agua/toxicidad , Compuestos de Cadmio/toxicidad , Interacciones Farmacológicas , Microalgas/efectos de los fármacos , Nanopartículas , Dióxido de Silicio/toxicidad , Titanio/toxicidad , Compuestos de Zinc/toxicidad
11.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500322

RESUMEN

In this research, we present a detailed comparative analysis of the bioactive substances of soybean varieties k-11538 (Russia), k-11559 (Russia), k-569 (China), k-5367 (China), k-5373 (China), k-5586 (Sweden), and Primorskaya-86 (Russia) using an LSM 800 confocal laser microscope and an amaZon ion trap SL mass spectrometer. Laser microscopy made it possible to clarify in detail the spatial arrangement of the polyphenolic content of soybeans. Our results revealed that the phenolics of soybean are spatially located mainly in the seed coat and the outer layer of the cotyledon. High-performance liquid chromatography (HPLC) was used in combination with an amaZon SL BRUKER DALTONIKS ion trap (tandem mass spectrometry) to identify target analytes in soybean extracts. The results of initial studies revealed the presence of 63 compounds, and 45 of the target analytes were identified as polyphenolic compounds.


Asunto(s)
Glycine max , Fenoles , Glycine max/química , Fenoles/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química , Microscopía Confocal , Rayos Láser
12.
Molecules ; 26(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203808

RESUMEN

This work represents a comparative metabolomic study of extracts of wild grapes obtained from six different places in the Primorsky and Khabarovsk territories (Far East Russia) and extracts of grapes obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). The metabolome analysis was performed by liquid chromatography in combination with ion trap mass spectrometry. The results showed the presence of 118 compounds in ethanolic extracts of V. amurensis grapes. In addition, several metabolites were newly annotated in V. amurensis. The highest diversity of phenolic compounds was identified in the samples of the V. amurensis grape collected in the vicinity of Vyazemsky (Khabarovsk Territory) and the floodplain of the Arsenyevka River (Primorsky Territory), compared to the other wild samples and cultural grapes obtained in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.


Asunto(s)
Fenoles/análisis , Vitis/química , Vitis/metabolismo , Cromatografía Liquida/métodos , Frutas/química , Metabolómica/métodos , Fenoles/química , Federación de Rusia , Espectrometría de Masas en Tándem/métodos
13.
Molecules ; 26(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34577050

RESUMEN

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


Asunto(s)
Cromatografía Liquida , Espectrometría de Masas en Tándem , Terpenos , Triticum
14.
Environ Res ; 186: 109513, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32305679

RESUMEN

This study reports the differences in toxic action between cadmium sulfide (CdS) and zinc sulfide (ZnS) nanoparticles (NPs) prepared by recently developed xanthate-mediated method. The aquatic toxicity of the synthesized NPs on four marine microalgae species was explored. Growth rate, esterase activity, membrane potential, and morphological changes of microalgae cells were evaluated using flow cytometry and optical microscopy. CdS and ZnS NPs demonstrated similar level of general toxicity and growth-rate inhibition to all used microalgae species, except the red algae P. purpureum. More specifically, CdS NPs caused higher inhibition of growth rate for C. muelleri and P. purpureum, while ZnS NPs were more toxic for A. ussuriensis and H. akashiwo species. Our findings suggest that the sensitivity of different microalgae species to CdS and ZnS NPs depends on the chemical composition of NPs and their ability to interact with the components of microalgal cell-wall. The red microalga was highly resistant to ZnS NPs most likely due to the presence of phycoerythrin proteins in the outer membrane bound Zn2+ cations defending their cells from further toxic influence. The treatment with CdS NPs caused morphological changes and biochemical disorder in all tested microalgae species. The toxicity of CdS NPs is based on their higher photoactivity under visible light irradiation and lower dissociation in water, which allows them to generate more reactive oxygen species and create a higher risk of oxidative stress to aquatic organisms. The results of this study contribute to our understanding of the parameters affecting the aquatic toxicity of semiconductor NPs and provide a basis for further investigations.


Asunto(s)
Microalgas , Nanopartículas , Compuestos de Cadmio , Nanopartículas/toxicidad , Sulfuros/toxicidad , Compuestos de Zinc
15.
Molecules ; 25(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825161

RESUMEN

Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300-400 bar), temperatures (50-60 °C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min. A HPLC-UV-VIS-ESI-MS/MS technique was applied to detect target analytes. A total of 48 different biologically active components have been identified in the Rh. adamsii SC-CO2 extracts. A total of 31 different biologically active components have been identified in the Rh. sichotense SC-CO2 extracts.


Asunto(s)
Dióxido de Carbono/química , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/análisis , Extractos Vegetales/análisis , Rhododendron/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Antioxidantes/análisis , Antioxidantes/aislamiento & purificación , Cromatografía con Fluido Supercrítico/métodos , Asia Oriental , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Rhododendron/clasificación , Siberia
16.
Molecules ; 25(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204525

RESUMEN

Ginseng roots, Panax ginseng C.A. Meyer, obtained from cultivated ginseng grown in the Kaesong province (North Korea) and Primorye (Russia) were extracted using the supercritical CO2 extraction method. The extracts were subsequently analyzed by high-performance liquid chromatography with tandem mass spectrometry identification. The results showed the spectral peaks of typical ginsenosides with some other minor groups, and major differences were observed between the spectra of the two ginseng samples. The use of a pressure of 400 bar and higher allowed an increase in the yield of ginsenosides in comparison with similar previous studies.


Asunto(s)
Dióxido de Carbono/química , Ginsenósidos/aislamiento & purificación , Panax/química , Cromatografía Líquida de Alta Presión , Cromatografía con Fluido Supercrítico , República Popular Democrática de Corea , Ginsenósidos/química , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Federación de Rusia , Espectrometría de Masas en Tándem
17.
Molecules ; 25(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531905

RESUMEN

Woody liana Schisandra chinensis contains valuable lignans, which are phenylpropanoids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) was shown to be the method of choice for the recovery of these naturally occurring compounds. Carbon dioxide (CO2) was the solvent with the flow rate (10-25 g/min) with 2% ethanol as co-solvent. In this piece of work operative parameters and working conditions were optimized by experimenting with different pressures (200-400 bars) and temperatures (40-60 °C). The extraction time varied from 60 to 120 min. HPLC-SPD-ESI -MS/MS techniques were applied to detect target analytes. Twenty-six different lignans were identified in the S. chinensis SC-CO2 extracts.


Asunto(s)
Dióxido de Carbono/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía con Fluido Supercrítico/métodos , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Dióxido de Carbono/aislamiento & purificación , Schisandra
18.
Molecules ; 25(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906811

RESUMEN

Extraction process of Cucumaria frondosa japonica Semper, 1868, which are subspecies of Cucumaria frondosa (Gunnerus, 1767), were studied. It was shown that supercritical carbon dioxide extraction of holothuria was more effective than conventional solvent extraction. Step-by-step extraction with carbon dioxide followed by supercritical extraction with the addition of a co-solvent of ethanol can almost double the yields of extracts of triterpene glycosides, styrenes and carotenoids. Moreover, the fraction of triterpene glycosides practically does not contain colored impurities, in contrast to traditional ethanol extraction. The obtained extracts by HPLC in combination with tandem mass spectrometry (HPLC-MS/MS) identified 15 triterpene glycosides, 18 styrene compounds and 14 carotenoids. Supercritical extraction made it possible to obtain extracts with yields superior to conventional hexane and alcohol extracts. Moreover, such an approach with the use of supercritical fluid extraction (SFE) and subsequent profiling of metabolites can help with the study of holothuria species that are not as well studied.


Asunto(s)
Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Cromatografía con Fluido Supercrítico , Cucumaria/química , Animales , Carotenoides/química , Cromatografía Liquida , Glicósidos/química , Estructura Molecular , Esteroles/química , Espectrometría de Masas en Tándem , Triterpenos/química
19.
Radiology ; 311(2): e232402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713022
20.
Environ Res ; 179(Pt B): 108818, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31678725

RESUMEN

Welding fumes are a major source of metal oxide particles, ozone, carbon monoxide, carbon dioxide, nitrogen oxides, and many other toxic substances. Hazardous properties and the level of toxicity of welding fumes depend mostly on the welding electrode type and the welding regime parameters. The specific objective of this study was to evaluate the aquatic toxicity of metal welding fume particles in vivo on microalga Heterosigma akashiwo. The quantity and size of particles were measured by flow cytometry using a scattering laser light with a wavelength of 405 nm. The number of microalgae cells after 72 h and 7 days exposition with welding fume particle suspensions was evaluated by flow cytometry. Morphological changes of the microalga were observed by optical microscopy. The toxic effect was demonstrated as a significant reduction of cell density after exposure of microalgae to welding fume particles. The greatest impact on the growth of microalga was caused by particles with high rutile content. It was shown that the adverse effect of metal oxide particles depends more on the chemical composition of particles in welding fume while the number and dispersity of particles had no noticeable toxic influence on microalgae. The findings of this research confirm the fact that the toxicity of welding fume particles can be significantly reduced by using rutile-cellulose coated electrodes.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Microalgas/efectos de los fármacos , Soldadura , Electrodos , Gases , Exposición por Inhalación , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA