Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 516: 47-58, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094818

RESUMEN

CMTR2 is an mRNA cap methyltransferase with poorly understood physiological functions. It catalyzes 2'-O-ribose methylation of the second transcribed nucleotide of mRNAs, potentially serving to mark RNAs as "self" to evade the cellular innate immune response. Here we analyze the consequences of Cmtr2 deficiency in mice. We discover that constitutive deletion of Cmtr2 results in mouse embryos that die during mid-gestation, exhibiting defects in embryo size, placental malformation and yolk sac vascularization. Endothelial cell deletion of Cmtr2 in mice results in vascular and hematopoietic defects, and perinatal lethality. Detailed characterization of the constitutive Cmtr2 KO phenotype shows an activation of the p53 pathway and decreased proliferation, but no evidence of interferon pathway activation. In summary, our study reveals the essential roles of Cmtr2 in mammalian cells beyond its immunoregulatory function.

2.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548752

RESUMEN

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Asunto(s)
Glioblastoma , Neoplasias Pulmonares , Humanos , Glioblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA