Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139593

RESUMEN

Optimization of the structure of piezoelectric transducers such as the proper design of matching layers can increase maximum wave energy transmission to the host structure and transducer sensitivity. A novel configuration of an ultrasonic transducer, where elastic metamaterial insertion is introduced to provide bulk wave mode conversion and to increase wave energy transfer into a substrate, is proposed. Configurations of layered elastic metamaterials with crack-like voids are examined theoretically since they can provide wide band gaps and strong wave localization and trapping. The analysis shows that the proposed metamaterial-based matching layers can sufficiently change wave energy transmission from a piezoelectric active element for various frequency ranges (relatively low frequencies as well as higher ones). The proposed configuration can also be useful for advanced sensing with higher sensitivity in certain frequency ranges or for demultiplexing different kinds of elastic waves.

2.
Sensors (Basel) ; 22(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236630

RESUMEN

To assess the ability of structural health monitoring (SHM) systems, a variety of prerequisites and contributing factors have to be taken into account. Within this publication, this variety is analyzed for actively introduced guided wave-based SHM systems. For these systems, it is not possible to analyze their performance without taking into account their structure and their applied system parameters. Therefore, interdependencies of performance assessment are displayed in an SHM pyramid based on the structure and its monitoring requirements. Factors influencing the quality, capability and reliability of the monitoring system are given and put into relation with state-of-the-art performance analysis in a non-destructive evaluation. While some aspects are similar and can be treated in similar ways, others, such as location, environmental condition and structural dependency, demand novel solutions. Using an open-access data set from the Open Guided Waves platform, a detailed method description and analysis of path-based performance assessment is presented.The adopted approach clearly begs the question about the decision framework, as the threshold affects the reliability of the system. In addition, the findings show the effect of the propagation path according to the damage position. Indeed, the distance of damage directly affects the system performance. Otherwise, the propagation direction does not alter the potentiality of the detection approach despite the anisotropy of composites. Nonetheless, the finite waveguide makes it necessary to look at the whole paths, as singular phenomena associated with the reflections may appear. Numerical investigation helps to clarify the centrality of wave mechanics and the necessity to take sensor position into account as an influencing factor. Starting from the findings achieved, all the issues are discussed, and potential future steps are outlined.


Asunto(s)
Reproducibilidad de los Resultados , Anisotropía , Monitoreo Fisiológico
3.
Sensors (Basel) ; 21(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525383

RESUMEN

Since stringers are often applied in engineering constructions to improve thin-walled structures' strength, methods for damage detection at the joints between the stringer and the thin-walled structure are necessary. A 2D mathematical model was employed to simulate Lamb wave excitation and sensing via rectangular piezoelectric-wafer active transducers mounted on the surface of an elastic plate with rectangular surface-bonded obstacles (stiffeners) with interface defects. The results of a 2D simulation using the finite element method and the semi-analytical hybrid approach were validated experimentally using laser Doppler vibrometry for fully bonded and semi-debonded rectangular obstacles. A numerical analysis of fundamental Lamb wave scattering via rectangular stiffeners in different bonding states is presented. Two kinds of interfacial defects between the stiffener and the plate are considered: the partial degradation of the adhesive at the interface and an open crack. Damage indices calculated using the data obtained from a sensor are analyzed numerically. The choice of an input impulse function applied at the piezoelectric actuator is discussed from the perspective of the development of guided-wave-based structural health monitoring techniques for damage detection.

4.
J Acoust Soc Am ; 137(1): 238-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25618055

RESUMEN

This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.

5.
Materials (Basel) ; 16(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36984294

RESUMEN

Cohesive and adhesive bindings degrade during operation and maintenance even if contacting materials in a manufactured laminated structure are perfectly matched at the interfaces. Two modelling approaches for describing partially closed delaminations or imperfect contact zones, which often occurs at the interfaces, are examined and considered. To confirm the adequateness of the applicability of the effective spring boundary conditions for guided wave scattering by a finite length delamination, guided wave propagation through a damaged zone with a distribution of micro-cracks is compared with an equivalent cohesive zone model, where the spring stiffnesses for the effective boundary conditions are calculated using the properties of the considered crack distribution. Two kinds of local interfacial decohesion zones with an imperfect contact at the interfaces are considered: uniform partially closed delaminations and bridged cracks. The possibility of the employment of the effective spring boundary conditions to substitute a distribution of micro-cracks is analysed and discussed. Two algorithms of generation of a distribution of open micro-cracks providing characteristics equivalent to the effective boundary conditions are presented and examined. The influence of the characteristics of a delamination on wave characteristics (eigenfrequencies, eigenforms, transmission coefficient) is investigated for several kinds of partially closed delaminations.

6.
Materials (Basel) ; 15(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35207846

RESUMEN

Laminate structures composed of stiff plates and thin soft interlayers are widely used in aerospace, automotive and civil engineering encouraging the development of reliable non-destructive strategies for their condition assessment. In the paper, elastodynamic behaviour of such laminate structures is investigated with emphasis on its application in ultrasonic based NDT and SHM for the identification of interlayer mechanical and interfacial contact properties. A particular attention is given to the practically important frequency range, in which the wavelength considerably exceeds the thickness of the film. Three layer model with spring-type boundary conditions employed for imperfect contact simulation is used for numerical investigation. Novel effective boundary conditions are derived via asymptotic expansion technique and used for analysis of the peculiar properties of elastic guided waves in considered laminates. It is revealed that the thin and soft film influences the behaviour of the laminate mainly via the effective stiffnesses being a combination of the elastic moduli of the film, its thickness and interface stiffnesses. To evaluate each of these parameters separately (or to figure out that the available experimental data are insufficient), a step-wise procedure employing the effective boundary conditions is proposed and tested versus the laser Doppler vibrometry data for Lamb waves in Aluminium/Polymer film/Alumunium structure. A good agreement between theoretical and experimental data is demonstrated for a certain symmetric laminate specimen. The possibility of using film-related thickness resonance frequencies to estimate the film properties and contact quality is also demonstrated. Additionally, the rich family of edge waves is also investigated, and the splitting of fundamental edge waves into pairs is revealed.

7.
J Acoust Soc Am ; 130(1): 113-21, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21786882

RESUMEN

Resonance localization of wave energy in two-dimensional (2D) waveguides with obstacles, known as a trapped mode effect, results in blocking of wave propagation. This effect is closely connected with the allocation of natural resonance poles in the complex frequency plane, which are in fact the spectral points of the related boundary value problem. With several obstacles the number of poles increases in parallel with the number of defects. The location of the poles in the complex frequency plane depends on the defect's relative position, but the gaps of transmission coefficient plots generally remain in the same frequency ranges as for every single obstacle separately. This property gives a possibility to extend gap bands by a properly selected combination of various scatterers. On the other hand, a resonance wave passing in narrow bands associated with the poles is also observed. Thus, while a resonance response of a single obstacle works as a blocker, the waveguide with several obstacles becomes opened in narrow vicinities of nearly real spectral poles, just as it is known for one-dimensional (1D) waveguides with a finite number of periodic scatterers. In the present paper the blocking and passing effects are analyzed based on a semi-analytical model for wave propagation in a 2D elastic layer with cracks or rigid inclusions.


Asunto(s)
Acústica , Modelos Teóricos , Acústica/instrumentación , Simulación por Computador , Elasticidad , Diseño de Equipo , Movimiento (Física) , Análisis Numérico Asistido por Computador , Sonido , Espectrografía del Sonido
8.
Artículo en Inglés | MEDLINE | ID: mdl-34057890

RESUMEN

In many industrial sectors, structural health monitoring (SHM) is considered as an addition to nondestructive testing (NDT) that can reduce maintenance effort during the lifetime of a technical facility, structural component, or vehicle. A large number of SHM methods are based on ultrasonic waves, whose properties change depending on structural health. However, the wide application of SHM systems is limited due to the lack of suitable methods to assess their reliability. The evaluation of the system performance usually refers to the determination of the probability of detection (POD) of a test procedure. Up until now, only a few limited methods exist to evaluate the POD of SHM systems, which prevents them from being standardized and widely accepted in the industry. The biggest hurdle concerning the POD calculation is the large number of samples needed. A POD analysis requires data from numerous identical structures with integrated SHM systems. Each structure is then damaged at different locations and with various degrees of severity. All of these are connected to high costs. Therefore, one possible way to tackle this problem is to perform computer-aided investigations. In this work, the POD assessment procedure established in NDT according to the Berens model is adapted to guided wave-based SHM systems. The approach implemented here is based on solely computer-aided investigations. After efficient modeling of wave propagation phenomena across an automotive component made of a carbon-fiber-reinforced composite, the POD curves are extracted. Finally, the novel concept of a POD map is introduced to look into the effect of damage position on system reliability.


Asunto(s)
Computadores , Transductores , Estudios de Factibilidad , Probabilidad , Reproducibilidad de los Resultados
9.
Ultrasonics ; 98: 88-93, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31229886

RESUMEN

The existence of the edge waves spectrum predicted in a series of recent theoretical studies is investigated and confirmed experimentally. Wave motion in 20 mm thickness aluminium rectangular plate with two facets is generated by a circular piezoelectric transducer and measured by laser Doppler vibrometry. Eight edge modes (four symmetric and four antisymmetric) are clearly observed by means of wavenumber-frequency analysis applied to out-of-plane velocities measured at the edge. The semi-analytical method used by the authors in previous theoretical studies is modified to take into account the facets. By the numerical investigations of edge waves in the plate with facets, the sensitivity of attenuation of higher order edge waves to the form of edge profile is revealed. A good agreement between experimental data and theoretical predictions is demonstrated for dispersion curves and the waveforms of individual modes extracted by means of 2D bandpass filters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA