Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Chem Soc ; 145(6): 3443-3453, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36689349

RESUMEN

The generation of enantiodivergent biocatalysts for C-H oxyfunctionalizations is ever more important in modern synthetic chemistry. Here, we have applied the FuncLib algorithm based on phylogenetic and Rosetta calculations to design a diverse repertoire of active, stable, and enantiodivergent fungal peroxygenases. 24 designs, each carrying 4-5 mutations in the catalytic core, were expressed functionally in yeast and benchmarked against characteristic model compounds. Several designs were active and stable in a range of temperature and pH, displaying unprecedented enantiodivergence, changing regioselectivity from alkyl to aromatic hydroxylation, and increasing catalytic efficiencies up to 10-fold, with 15-fold improvements in total turnover numbers over the parental enzyme. We find that this dramatic functional divergence stems from beneficial epistasis among the mutations and an extensive reorganization of the heme channel. Our work demonstrates that FuncLib can rapidly design highly functional libraries enriched in enantioselective peroxygenases not seen in nature for a range of biotechnological applications.


Asunto(s)
Oxigenasas de Función Mixta , Saccharomyces cerevisiae , Filogenia , Oxigenasas de Función Mixta/química , Catálisis , Dominio Catalítico , Saccharomyces cerevisiae/metabolismo
2.
Angew Chem Int Ed Engl ; 62(9): e202217372, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583658

RESUMEN

The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.


Asunto(s)
Ácidos Grasos , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ácidos Grasos/química , Oxidación-Reducción , Hidroxilación
3.
Appl Environ Microbiol ; 87(19): e0087821, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288703

RESUMEN

Fungal unspecific peroxygenases (UPOs) are emergent biocatalysts that perform highly selective C-H oxyfunctionalizations of organic compounds, yet their heterologous production at high levels is required for their practical use in synthetic chemistry. Here, we achieved functional expression of two new unusual acidic peroxygenases from Candolleomyces (Psathyrella) aberdarensis (PabUPO) in yeasts and their production at a large scale in a bioreactor. Our strategy was based on adopting secretion mutations from an Agrocybe aegerita UPO mutant, the PaDa-I variant, designed by directed evolution for functional expression in yeast, which belongs to the same phylogenetic family as PabUPOs, long-type UPOs, and shares 65% sequence identity. After replacing the native signal peptides with the evolved leader sequence from PaDa-I, we constructed and screened site-directed recombination mutant libraries, yielding two recombinant PabUPOs with expression levels of 5.4 and 14.1 mg/liter in Saccharomyces cerevisiae. These variants were subsequently transferred to Pichia pastoris for overproduction in a fed-batch bioreactor, boosting expression levels up to 290 mg/liter, with the highest volumetric activity achieved to date for a recombinant peroxygenase (60,000 U/liter, with veratryl alcohol as the substrate). With a broad pH activity profile, ranging from pH 2.0 to 9.0, these highly secreted, active, and stable peroxygenases are promising tools for future engineering endeavors as well as for their direct application in different industrial and environmental settings. IMPORTANCE In this work, we incorporated several secretion mutations from an evolved fungal peroxygenase to enhance the production of active and stable forms of two unusual acidic peroxygenases. The tandem-yeast expression system based on S. cerevisiae for directed evolution and P. pastoris for overproduction on an ∼300-mg/liter scale is a versatile tool to generate UPO variants. By employing this approach, we foresee that acidic UPO variants will be more readily engineered in the near future and adapted to practical enzyme cascade reactions that can be performed over a broad pH range to oxyfunctionalize a variety of organic compounds.


Asunto(s)
Agaricales/enzimología , Agaricales/genética , Oxigenasas de Función Mixta/genética , Reactores Biológicos , Fermentación , Mutación , Pichia/genética , Ingeniería de Proteínas , Saccharomyces cerevisiae/genética
4.
Angew Chem Int Ed Engl ; 58(23): 7873-7877, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30945422

RESUMEN

An increasing number of biocatalytic oxidation reactions rely on H2 O2 as a clean oxidant. The poor robustness of most enzymes towards H2 O2 , however, necessitates more efficient systems for in situ H2 O2 generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H2 O2 -dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.


Asunto(s)
Aspergillus oryzae/enzimología , Formiatos/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Biocatálisis , Cinética , Oxidación-Reducción
5.
Curr Opin Struct Biol ; 73: 102342, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35240455

RESUMEN

The selective insertion of oxygen into non-activated organic molecules has to date been considered of utmost importance to synthesize existing and next generation industrial chemicals or pharmaceuticals. In this respect, the minimal requirements and high activity of fungal unspecific peroxygenases (UPOs) situate them as the jewel in the crown of C-H oxyfunctionalization biocatalysts. Although their limited availability and development has hindered their incorporation into industry, the conjunction of directed evolution and computational design is approaching UPOs to practical applications. In this review, we will address the most recent advances in UPO engineering, both of the long and short UPO families, while discussing the future prospects in this fast-moving field of research.


Asunto(s)
Oxigenasas de Función Mixta , Ingeniería de Proteínas , Humanos , Oxigenasas de Función Mixta/química
6.
Biotechnol Adv ; 51: 107615, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32827669

RESUMEN

Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.


Asunto(s)
Oxigenasas de Función Mixta , Ingeniería de Proteínas , Oxigenasas de Función Mixta/genética
7.
ACS Catal ; 11(5): 2644-2649, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33763289

RESUMEN

Aromatic hydroxylation reactions catalyzed by heme-thiolate enzymes proceed via an epoxide intermediate. These aromatic epoxides could be valuable building blocks for organic synthesis giving access to a range of chiral trans-disubstituted cyclohexadiene synthons. Here, we show that naphthalene epoxides generated by fungal peroxygenases can be subjected to nucleophilic ring opening, yielding non-racemic trans-disubstituted cyclohexadiene derivates, which in turn can be used for further chemical transformations. This approach may represent a promising shortcut for the synthesis of natural products and APIs.

8.
ACS Chem Biol ; 13(12): 3259-3268, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30376293

RESUMEN

Because of their minimal requirements, substrate promiscuity and product selectivity, fungal peroxygenases are now considered to be the jewel in the crown of C-H oxyfunctionalization biocatalysts. In this work, the crystal structure of the first laboratory-evolved peroxygenase expressed by yeast was determined at a resolution of 1.5 Å. Notable differences were detected between the evolved and native peroxygenase from Agrocybe aegerita, including the presence of a full N-terminus and a broader heme access channel due to the mutations that accumulated through directed evolution. Further mutagenesis and soaking experiments with a palette of peroxygenative and peroxidative substrates suggested dynamic trafficking through the heme channel as the main driving force for the exceptional substrate promiscuity of peroxygenase. Accordingly, this study provides the first structural evidence at an atomic level regarding the mode of substrate binding for this versatile biocatalyst, which is discussed within a biological and chemical context.


Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Agrocybe/enzimología , Dominio Catalítico/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligandos , Oxigenasas de Función Mixta/genética , Mutagénesis Sitio-Dirigida , Mutación , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Pichia/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Especificidad por Sustrato/genética
9.
Sci Rep ; 8(1): 5532, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615759

RESUMEN

Rubisco is an ancient, catalytically conserved yet slow enzyme, which plays a central role in the biosphere's carbon cycle. The design of Rubiscos to increase agricultural productivity has hitherto relied on the use of in vivo selection systems, precluding the exploration of biochemical traits that are not wired to cell survival. We present a directed -in vitro- evolution platform that extracts the enzyme from its biological context to provide a new avenue for Rubisco engineering. Precambrian and extant form II Rubiscos were subjected to an ensemble of directed evolution strategies aimed at improving thermostability. The most recent ancestor of proteobacteria -dating back 2.4 billion years- was uniquely tolerant to mutagenic loading. Adaptive evolution, focused evolution and genetic drift revealed a panel of thermostable mutants, some deviating from the characteristic trade-offs in CO2-fixing speed and specificity. Our findings provide a novel approach for identifying Rubisco variants with improved catalytic evolution potential.


Asunto(s)
Evolución Molecular Dirigida , Rhodospirillum/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Secuencia de Aminoácidos , Dióxido de Carbono/metabolismo , Cinética , Modelos Moleculares , Filogenia , Conformación Proteica , Homología de Secuencia
10.
Genome Announc ; 2(1)2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24504004

RESUMEN

Here we report the draft genome sequence of Streptomyces exfoliatus DSMZ 41693, which includes a gene encoding a poly(3-hydroxyoctanoate) depolymerase, an enzyme which can be used for the industrial synthesis of chiral (R)-3-hydroxyalkanoic acids. In addition, the genome carries numerous genes involved in the biosynthesis of secondary metabolites, including polyketides and terpenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA