RESUMEN
Counterfeit products and data vulnerability present significant challenges in contemporary society. Hence, various methods and technologies are explored for anticounterfeiting encoding, with luminescent tracers, particularly luminescent carbon dots (CDs), emerging as a notable solution. CDs offer promising contributions to product security, environmental sustainability, and the circular economy. This critical review aims to highlight the luminescence responsiveness of CDs to physical and chemical stimuli, achieved through nanoengineering their chemical structure. The discussion will delve into the various tunable luminescence mechanisms and decay times of CDs, investigating preferential excitations such as up-conversion, delayed fluorescence, fluorescence, room temperature phosphorescence, persistent luminescence, energy and charge transfer, as well as photo-chemical interactions. These insights are crucial for advancing anticounterfeiting solutions. Following this exploration, a systematic review will focus on the research of luminescent CDs' smart encoding applications, encompassing anticounterfeiting, product tracing, quality certification, and information encryption. Finally, the review will address key challenges in implementing CDs-based technology, providing specific insights into strategies aimed at maximizing their stability and efficacy in anticounterfeiting encoding applications.
RESUMEN
AIM: To evaluate the quantity and quality of randomized controlled trials (RCTs) in hepatobiliary surgery and for identifying gaps in current evidences. METHODS: A systematic search was conducted in MEDLINE (via PubMed), Web of Science, and Cochrane Controlled Register of Trials (CENTRAL) for RCTs of hepatobiliary surgery published from inception until the end of 2023. The quality of each study was assessed using the Cochrane risk-of-bias (RoB) tool. The associations between risk of bias and the region and publication date were also assessed. Evidence mapping was performed to identify research gaps in the field. RESULTS: The study included 1187 records. The number and proportion of published randomized controlled trials (RCTs) in hepatobiliary surgery increased over time, from 13 RCTs (.0005% of publications) in 1970-1979 to 201 RCTs (.003% of publications) in 2020-2023. There was a significant increase in the number of studies with a low risk of bias in RoB domains (p < .01). The proportion of RCTs with low risk of bias improved significantly after the introduction of CONSORT guidelines (p < .001). The evidence mapping revealed a significant research focus on major and minor hepatectomy and cholecystectomy. However, gaps were identified in liver cyst surgery and hepatobiliary vascular surgery. Additionally, there are gaps in the field of perioperative management and nutrition intervention. CONCLUSION: The quantity and quality of RCTs in hepatobiliary surgery have increased over time, but there is still room for improvement. We have identified gaps in current research that can be addressed in future studies.
Asunto(s)
Hepatectomía , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Colecistectomía , Procedimientos Quirúrgicos del Sistema BiliarRESUMEN
In this work, nanocomposites based on titanium dioxide and reduced graphene oxide (TiO2@rGO) with different weight percentages of rGO (4, 8, and 16 wt%) were prepared by the hydrothermal/solvothermal synthesis method and thermally treated at 300 °C. The prepared nanocomposites were explored for the removal of methylene blue dye (MB) in the presence of simulated solar illumination as well as natural sunlight. The structural, morphological, chemical, and optical properties of the as-synthesized TiO2@rGO nanocomposites were characterized. The obtained results of the graphene-based nanocomposite materials indicated the existence of interactions between TiO2 and rGO, i.e., the Ti-O-C bond, which confirmed the successful integration of both components to form the TiO2@rGO nanocomposites. The addition of rGO increased the specific surface area, decreased the band gap energy, and increased the photocatalytic degradation efficiency of MB from water compared to TiO2 nanoparticles. The results of photocatalytic activity indicated that the amount of rGO in the prepared TiO2@rGO nanocomposites played a significant role in the application of different photocatalytic parameters, including the initial dye concentration, catalyst concentration, water environment, and illumination source. Our studies show that the reinforcement of the nanocomposite with 8 wt% of rGO allowed us to obtain the maximum photocatalytic decomposition performance of MB (10 mg·L-1) with a removal percentage of 99.20 after 2 h. Additionally, the obtained results show that the prepared TiO2@rGO_8 wt% nanocomposite can be used in three consecutive cycles while maintaining photocatalytic activity over 90%.
RESUMEN
BACKGROUND: The outcomes of endoscopic ultrasonography-guided drainage (EUSD) in treatment of pancreas fluid collection (PFC) after pancreas surgeries have not been evaluated systematically. The current systematic review and meta-analysis aim to evaluate the outcomes of EUSD in patients with PFC after pancreas surgery and compare it with percutaneous drainage (PCD). METHODS: PubMed and Web of Science databases were searched for studies reporting outcomes EUSD in treatment of PFC after pancreas surgeries, from their inception until January 2022. Two meta-analyses were performed: (A) a systematic review and single-arm meta-analysis of EUSD (meta-analysis A) and (B) two-arm meta-analysis comparing the outcomes of EUSD and PCD (meta-analysis B). Pooled proportion of the outcomes in meta-analysis A as well as odds ratio (OR) and mean difference (MD) in meta-analysis B was calculated to determine the technical and clinical success rates, complications rate, hospital stay, and recurrence rate. ROBINS-I tool was used to assess the risk of bias. RESULTS: The literature search retrieved 610 articles, 25 of which were eligible for inclusion. Included clinical studies comprised reports on 695 patients. Twenty-five studies (477 patients) were included in meta-analysis A and eight studies (356 patients) were included in meta-analysis B. In meta-analysis A, the technical and clinical success rates of EUSD were 94% and 87%, respectively, with post-procedural complications of 14% and recurrence rates of 9%. Meta-analysis B showed comparable technical and clinical success rates as well as complications rates between EUSD and PCD. EUSD showed significantly shorter duration of hospital stay compared to that of patients treated with PCD. CONCLUSION: EUSD seems to be associated with high technical and clinical success rates, with low rates of procedure-related complications. Although EUSD leads to shorter hospital stay compared to PCD, the certainty of evidence was low in this regard.
Asunto(s)
Endosonografía , Enfermedades Pancreáticas , Drenaje , Humanos , Tiempo de Internación , Páncreas/diagnóstico por imagen , Páncreas/cirugía , Enfermedades Pancreáticas/cirugíaRESUMEN
In a cyberphysical production system, the connectivity between the physical entities of a production system with the digital component that controls and monitors that system takes fundamental importance. This connectivity has been increasing from the transducers' side, through gathering new functionalities and operating increasingly independently, taking the role of smart transducers, and from the applications' side, by being developed in a distributed and decentralized paradigm. This work presents a plug-and-play solution capable of integrating smart transducers compliant with the IEEE 1451 standard in industrial applications based on the IEC 61499 standard. For this, we implemented the NCAP module of the smart transducer defined in IEEE 1451, which, when integrated with 4diac IDE and DINASORE (development and execution tools compliant with IEC 61499), enabled a solution that presented automatically the smart sensors and actuators in the IDE application and embedded their functionalities (access to data and processing functions) in the runtime environment. In this way, a complete plug-and-play solution was presented from the connection of the transducer to the network until its integration into the application.
Asunto(s)
Transductores , Estándares de ReferenciaRESUMEN
The use of Sensors and Actuators is ubiquitous in an industrial environment. The advent of the Industrial Internet-of-Things (IIoT) and the 4th industrial revolution demands new, more intelligent and more efficient ways to be able to connect, read and control transducers at the plant floor level. Newer control and data science techniques also largely benefit from structured information endpoints available at the edge of the network. The IEEE 1451 standard presents architecture and methodology to solve these problems with the usage of smart transducers, introducing into edge devices concepts such as self-identification and standardization of data communication. In this work, a transducer interface module is developed using the IEEE 1451 standard focused on flexibility, ease of integration and plug-and-play features. Furthermore, a system architecture, based on IEEE 1451.0 is presented, and development and implementation features are explained. This system is then released as an open-source platform to help and motivate the usage of smart transducer systems. At last, the system is tested, results are collected, and a methodology and metrics are defined for comparison between different smart transducer systems.
Asunto(s)
TransductoresRESUMEN
Aim: This systematic review aimed to investigate the drugs used and their potential effect on noninvasive ventilation (NIV). Background: NIV is used increasingly in acute respiratory failure (ARF). Sedation and analgesia are potentially beneficial in NIV, but they can have a deleterious impact. Proper guidelines to specifically address this issue and the recommendations for or against it are scarce in the literature. In the most recent guidelines published in 2017 by the European Respiratory Society/American Thoracic Society (ERS/ATS) relating to NIV use in patients having ARF, the well-defined recommendation on the selective use of sedation and analgesia is missing. Nevertheless, some national guidelines suggested using sedation for agitation. Methods: Electronic databases (PubMed/Medline, Google Scholar, and Cochrane library) from January 1999 to December 2019 were searched systematically for research articles related to sedation and analgosedation in NIV. A brief review of the existing literature related to sedation and analgesia was also done. Review results: Sixteen articles (five randomized trials) were analyzed. Other trials, guidelines, and reviews published over the last two decades were also discussed. The present review analysis suggests dexmedetomidine as the emerging sedative agent of choice based on the most recent trials because of better efficacy with an improved and predictable cardiorespiratory profile. Conclusion: Current evidence suggests that sedation has a potentially beneficial role in patients at risk of NIV failure due to interface intolerance, anxiety, and pain. However, more randomized controlled trials are needed to comment on this issue and formulate strong evidence-based recommendations. How to cite this article: Karim HMR, Sarc I, Calandra C, Spadaro S, Mina B, Ciobanu LD, et al. Role of Sedation and Analgesia during Noninvasive Ventilation: Systematic Review of Recent Evidence and Recommendations. Indian J Crit Care Med 2022;26(8):938-948.
RESUMEN
Graphene nanocomposites are emerging carbon-based materials with interesting electrical, mechanical, optical and magnetic properties, relevant for applications in different fields. Despite this increased use, the impact of graphene nanocomposites residues in the environment has not been properly studied. Thus, the goal of this work was to assess the toxicity of two nickel/graphene nanocomposites (G/Ni1 and G/Ni2) differing in size and shape to Danio rerio embryos. Their toxicity was evaluated using apical (mortality, development and hatching), biochemical [cholinesterase (ChE), glutathione-S-transferase (GST), and catalase (CAT) activities] and behavioral (locomotor activity) endpoints. At the tested concentrations, neither of the nanocomposites presented lethal or developmental effects. Nevertheless, both nanocomposites induced behavioral effects, reducing swimming distances. This effect was, however detected at lower concentrations in the G/Ni1 nanocomposite. At biochemical level, only G/Ni1 nanocomposite showed to interfere with the measured parameters, increasing the activities of ChE, CAT and GST. Differences in the effects induced by the two nanocomposites seem to be related not only with their size, but also with the shape and the ability to continuously release nickel ions to aqueous medium. This work highlights the importance of studying graphene nanocomposites effects to aquatic organisms even when acute toxicity is not expected. The relevance of the effects found in this work need to be further analyzed in light of the consequences to the long-term fitness of the organisms and in light of the environmental concentrations expected for this type of compounds.
Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Grafito/toxicidad , Locomoción/efectos de los fármacos , Nanocompuestos/toxicidad , Níquel/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Embrión no Mamífero/metabolismo , Fenómenos Magnéticos , Tamaño de la Partícula , NataciónRESUMEN
The supercritical carbon dioxide (scCO2 ) synthesis of non-reduced graphene oxide (GO) aerogels from dispersions of GO in ethanol is here reported as a low-cost, efficient, and environmentally friendly process. The preparation is carried out under the mild conditions of 333â K and 20â MPa. The high aspect ratio of the used GO sheets (ca.â 30â µm lateral dimensions) allowed the preparation of aerogel monoliths by simultaneous scCO2 gelation and drying. Solid-state characterization results indicate that a thermally-stable mesoporous non-reduced GO aerogel was obtained by using the supercritical procedure, keeping most of the surface oxygenated groups on the GO sheets, thus, facilitating further functionalization. Moreover, the monoliths have a very low density, high specific surface area, and excellent mechanical integrity; characteristics which rival those of most light-weight reduced graphene aerogels reported in the literature.
RESUMEN
Nanographene oxide (nGO) has been recently proposed as a new antitumoral therapeutic agent, drug delivery carrier and gene transfection vehicle, among others. Treatment is carried out by hyperthermia induced by infrared irradiation. After treatment, the nanosystems will be inevitably excreted and released to the environment. To understand the potential impacts of pegylated nGO (nGO-PEG), three key species from different trophic levels were used: the green micro-algae Raphidocelis subcapitata (growth inhibition test), the cladocera Daphnia magna (acute and chronic tests), and the fish Danio rerio (fish embryo test). Besides a regular standard procedure to assess toxicity, and considering the mode of action of nGO-PEG in cancer treatment, a simultaneous infrared lamp exposure was carried out for D. magna and D. rerio. Additionally, and taking advantage of the phenotypic transparency of D. magna, nGO-PEG was fluorescently tagged to evaluate the potential uptake of nGO-PEG. The R. subcapitata growth inhibition test showed effects during the first 48â¯h, recovering till the end of the test (96â¯h). No acute or chronic effects were observed for D. magna, under standard or infrared light exposures although confocal microscope images showed nGO-PEG uptake. Very small percentages of mortality and abnormalities were observed in D. rerio exposed with and without the infrared lamp. Although low hazard may be expected for nGO-PEG in aquatic ecosystems, further studies with species with different life traits should be accomplished, in order to derive more accurate conclusions.
Asunto(s)
Grafito/toxicidad , Óxidos/toxicidad , Polietilenglicoles/toxicidad , Animales , Antineoplásicos , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo , Daphnia/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Embrión no Mamífero/efectos de los fármacos , Cadena Alimentaria , Grafito/química , Óxidos/química , Polietilenglicoles/química , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriologíaRESUMEN
This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage.
Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles , Grafito/química , Neoplasias/diagnóstico , Imagen Óptica , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Imagen Óptica/instrumentación , Imagen Óptica/métodosRESUMEN
The weight of marine litter has been marginally considered in comparison to counting and categorizing items. However, weight determines litter dynamics on water and coasts, and it is an essential parameter for planning and optimizing clean-up activities. This work reviewed 80 publications that reported both the number and weight of beached macro-litter worldwide. On average, a litter item weighed 19.5 ± 20.3 g, with a median weight of 13.4 g. Plastics composed 80% by number and 51% by weight of the global litter bulk. A plastic item weighed 12.9 ± 13.8 g on average, with a median weight of 9 g. The analysis based on continents and on water bodies returned similar values, which can be used to estimate litter weight on beaches from past and future visual census surveys, and from remote sensing imagery. Overall, this work can improve litter monitoring reports and support dynamics modelling, thereby contributing for environmental protection and mitigation efforts.
Asunto(s)
Monitoreo del Ambiente , Plásticos , Monitoreo del Ambiente/métodos , Plásticos/análisis , Restauración y Remediación Ambiental/métodosRESUMEN
In the context of marine litter monitoring, reporting the weight of beached litter can contribute to a better understanding of pollution sources and support clean-up activities. However, the litter scaling task requires considerable effort and specific equipment. This experimental study proposes and evaluates three methods to estimate beached litter weight from aerial images, employing different levels of litter categorization. The most promising approach (accuracy of 80 %) combined the outcomes of manual image screening with a generalized litter mean weight (14 g) derived from studies in the literature. Although the other two methods returned values of the same magnitude as the ground-truth, they were found less feasible for the aim. This study represents the first attempt to assess marine litter weight using remote sensing technology. Considering the exploratory nature of this study, further research is needed to enhance the reliability and robustness of the methods.
Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Monitoreo del Ambiente/métodos , Reproducibilidad de los ResultadosRESUMEN
Biopolymeric nanoparticles (NPs) have gained significant attention in several areas as an alternative to synthetic polymeric NPs due to growing environmental and immunological concerns. Among the most promising biopolymers is poly(lactic acid) (PLA), with a reported high degree of biocompatibility and biodegradability. In this work, PLA NPs were synthesized according to a controlled gelation process using a combination of single-emulsion and nanoprecipitation methods. This study evaluated the influence of several experimental parameters for accurate control of the PLA NPs' size distribution and aggregation. Tip sonication (as the stirring method), a PLA concentration of 10 mg/mL, a PVA concentration of 2.5 mg/mL, and low-molecular-weight PLA (Mw = 5000) were established as the best experimental conditions to obtain monodisperse PLA NPs. After gelification process optimization, flutamide (FLU) was used as a model drug to evaluate the encapsulation capability of the PLA NPs. The results showed an encapsulation efficiency of 44% for this cytostatic compound. Furthermore, preliminary cell viability tests showed that the FLU@PLA NPs allowed cell viabilities above 90% up to a concentration of 20 mg/L. The comprehensive findings showcase that the PLA NPs fabricated using this straightforward gelification method hold promise for encapsulating cytostatic compounds, offering a novel avenue for precise drug delivery in cancer therapy.
RESUMEN
Investigations into traffic accidents that lead to the determination of their causes and consequences are useful to all interested parties, both in the public and private sectors. One of the phases of investigation is the capture of data enabling the complete reconstruction of the accident scene, which is usually the point at which a conflict arises between the slow process of information gathering and the need to restore normal traffic flow. To reduce to a minimum the time the traffic is halted, this paper follows a methodology to reconstruct traffic accidents and puts forward a series of procedures and tools that are applicable to both large and small scenarios. The methodology uses low-cost UAV-SfM in combination with UAS aerial image capture systems and inexpensive GNSS equipment costing less than 900. This paper describes numerous tests and assessments that were carried out on four potential work scenarios (E-1 and E-2 urban roads with several intersections; E-3, an urban crossing with medium slopes; and E-4, a complex road section with different land morphologies), assessing the impact of using simple or double strip flights and the number of GCPs, their spacing distance and different distribution patterns. From the different configurations tested, the best results were achieved in those offset-type distributions where the GCPs were placed on both sides of the working area and at each end, with a spacing between 100 and 50 m and using double strip flights. Our conclusion is that the application of this protocol would be highly efficient and economical in the reconstruction of traffic accidents, provide simplicity in implementation, speed of capture and data processing, and provide reliable results quite economically and with a high degree of accuracy with RMSE values below 5 cm.
RESUMEN
Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Microfluídica/métodos , Animales , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/administración & dosificaciónRESUMEN
BACKGROUND: ALPPS popularity is increasing among surgeons worldwide and its indications are expanding to cure patients with primarily unresectable liver tumors. Few reports recommended limitations or even contraindications of ALPPS in perihilar cholangiocarcinoma (phCC). Here, we discuss the results of ALPPS in patients with phCC in a systematic review as well as a pooled data analysis. METHODS: MEDLINE and Web of Science databases were systematically searched for relevant literature up to December 2023. All studies reporting ALPPS in the management of phCC were included. A single-arm meta-analysis of proportions was carried out to estimate the overall rate of outcomes. RESULTS: After obtaining 207 articles from the primary search, data of 18 studies containing 112 phCC patients were included in our systematic review. Rates of major morbidity and mortality were calculated to be 43% and 22%, respectively. The meta-analysis revealed a PHLF rate of 23%. One-year disease-free survival was 65% and one-year overall survival was 69%. CONCLUSIONS: ALPPS provides a good chance of cure for patients with phCC in comparison to alternative treatment options, but at the expense of debatable morbidity and mortality. With refinement of the surgical technique and better perioperative patient management, the results of ALPPS in patients with phCC were improved.
RESUMEN
PROBLEM: Therapeutic planning strategies have been developed to enhance the effectiveness of cancer drugs. Nevertheless, their performance is highly limited by the inefficient biological representativeness of predictive tumor growth models, which hinders their translation to clinical practice. OBJECTIVE: This study proposes a disruptive approach to oncology based on nature-inspired control using realistic Black Hole physical laws, in which tumor masses are trapped to experience attraction dynamics on their path to complete remission or to become a chronic disease. This control method is designed to operate independently of individual patient idiosyncrasies, including high tumor heterogeneities and highly uncertain tumor dynamics, making it a promising avenue for advancing beyond the limitations of the traditional survival probabilistic paradigm. DESIGN: Here, we provide a multifaceted study of chemotherapy therapeutic planning that includes: (1) the design of a pioneering controller algorithm based on physical laws found in the Black Holes; (2) investigation of the ability of this controller algorithm to ensure stable equilibrium treatments; and (3) simulation tests concerning tumor volume dynamics using drugs with significantly different pharmacokinetics (Cyclophosphamide and Atezolizumab), tumor volumes (200 mm3 and 12 732 mm3) and modeling characterizations (Gompertzian and Logistic tumor growth models). RESULTS: Our results highlight the ability of this new astrophysical-inspired control algorithm to perform effective chemotherapy treatments for multiple tumor-treatment scenarios, including tumor resistance to chemotherapy, clinical scenarios modelled by time-dependent parameters, and highly uncertain tumor dynamics. CONCLUSIONS: Our findings provide strong evidence that cancer therapy inspired by phenomena found in black holes can emerge as a disruptive paradigm. This opens new high-impacting research directions, exploring synergies between astrophysical-inspired control algorithms and Artificial Intelligence applied to advanced personalized cancer therapeutics.