Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(8): 6611-6617, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37344642

RESUMEN

BACKGROUND: In our previous research, it was found that the cerebrospinal fluid had higher levels of glutamate, astrocytes were stimulated and released pro-inflammatory factors in a subarachnoid hemorrhage model. Glutamate is a neurotransmitter produced in abundance by excitatory neurons in the central nervous system, residual glutamate can cause neurotoxicity. Recent studies indicate that most glutamate is absorbed by astrocytes, to optimize neurological functions and prevent excitotoxicity. However, it is still unclear if astrocytes could be stimulated by glutamate, and the concentration range of glutamate transportable by astrocytes. Thus, further research is necessary. METHODS AND RESULTS: This study aimed to clarify these scientific questions by stimulating primary astrocytes at different glutamate concentrations (0, 25, 50, and 100 µM) for 24 h. The results showed that glutamate induced an increased response in astrocytes, the protein levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were upregulated in treatment groups with 50 and 100 µM. Additionally, the protein expression of complement component 3 (C3) significantly increased following glutamate stimulation (50 and 100 µM) for 24 h. Furthermore, the supernatant of the 100 µM treatment group significantly decreased the viability of HT-22 (an immortalized mouse hippocampal neuronal cell line). CONCLUSIONS: In summary, our results indicate that increased extracellular glutamate levels can activate astrocytes and promote pro-inflammatory factor production. Moreover, the concentration range of glutamate transported by astrocytes is approximately less than 50-100 µM. Therefore, our study suggests that experimental antagonization of glutamate excitotoxicity is feasible.


Asunto(s)
Astrocitos , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/metabolismo , Astrocitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Hipocampo/metabolismo , Células Cultivadas
2.
Brain Res Bull ; 209: 110908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402995

RESUMEN

BACKGROUND: medial temporal lobe epilepsy (mTLE) is among the most common types of temporal lobe epilepsy (TLE) ,it is generally resistant to drug treatment, which significantly impacts the quality of life and treatment. Research on novel therapeutic approaches for mTLE has become a current focus. Our study aims to construct and analyze a competing endogenous RNA (ceRNA) network that targets neuroinflammation using publicly available data, which may offer a novel therapeutic approach for mTLE. METHODS: we utilized the R package to analyze GSE186334 downloaded from Gene Expression Omnibus database, subsequently constructing and identifying hub network within the ceRNA network using public databases. Lastly, we validated the expressions and interactions of some nodes within the hub ceRNA network in Sombati cell model. RESULTS: our transcriptome analysis identified 649 differentially expressed (DE) mRNAs (273 up-regulated, 376 down-regulated) and 36 DE circRNAs (11 up-regulated, 25 down-regulated) among mTLE patients. A total of 23 candidate DE mRNAs associated with neuroinflammation were screened, and two ceRNA networks were constructed. A hub network was further screened which included 3 mRNAs, 22 miRNAs, and 11 circRNAs. Finally, we confirmed the hsa-miR-149-5p is crucial in the regulatory effect of hsa_circ_0005145 on IL - 1α in the hub network. CONCLUSIONS: In summary, our study identified a hub ceRNA network and validated a potential circRNA-miRNA-mRNA axis targeting neuroinflammation. The results of our research may serve as a potential therapeutic target for mTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , MicroARNs , Humanos , ARN Circular/genética , ARN Endógeno Competitivo , Epilepsia del Lóbulo Temporal/genética , Enfermedades Neuroinflamatorias , Calidad de Vida , MicroARNs/genética , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA