Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neural Comput ; 35(11): 1820-1849, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37725705

RESUMEN

Neural activity in the brain exhibits correlated fluctuations that may strongly influence the properties of neural population coding. However, how such correlated neural fluctuations may arise from the intrinsic neural circuit dynamics and subsequently affect the computational properties of neural population activity remains poorly understood. The main difficulty lies in resolving the nonlinear coupling between correlated fluctuations with the overall dynamics of the system. In this study, we investigate the emergence of synergistic neural population codes from the intrinsic dynamics of correlated neural fluctuations in a neural circuit model capturing realistic nonlinear noise coupling of spiking neurons. We show that a rich repertoire of spatial correlation patterns naturally emerges in a bump attractor network and further reveals the dynamical regime under which the interplay between differential and noise correlations leads to synergistic codes. Moreover, we find that negative correlations may induce stable bound states between two bumps, a phenomenon previously unobserved in firing rate models. These noise-induced effects of bump attractors lead to a number of computational advantages including enhanced working memory capacity and efficient spatiotemporal multiplexing and can account for a range of cognitive and behavioral phenomena related to working memory. This study offers a dynamical approach to investigating realistic correlated neural fluctuations and insights to their roles in cortical computations.

2.
J Neurosci ; 41(16): 3665-3678, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33727333

RESUMEN

Cortical circuits generate patterned activities that reflect intrinsic brain dynamics that lay the foundation for any, including stimuli-evoked, cognition and behavior. However, the spatiotemporal organization properties and principles of this intrinsic activity have only been partially elucidated because of previous poor resolution of experimental data and limited analysis methods. Here we investigated continuous wave patterns in the 0.5-4 Hz (delta band) frequency range on data from high-spatiotemporal resolution optical voltage imaging of the upper cortical layers in anesthetized mice. Waves of population activities propagate in heterogeneous directions to coordinate neuronal activities between different brain regions. The complex wave patterns show characteristics of both stereotypy and variety. The location and type of wave patterns determine the dynamical evolution when different waves interact with each other. Local wave patterns of source, sink, or saddle emerge at preferred spatial locations. Specifically, "source" patterns are predominantly found in cortical regions with low multimodal hierarchy such as the primary somatosensory cortex. Our findings reveal principles that govern the spatiotemporal dynamics of spontaneous cortical activities and associate them with the structural architecture across the cortex.SIGNIFICANCE STATEMENT Intrinsic brain activities, as opposed to external stimulus-evoked responses, have increasingly gained attention, but it remains unclear how these intrinsic activities are spatiotemporally organized at the cortex-wide scale. By taking advantage of the high spatiotemporal resolution of optical voltage imaging, we identified five wave pattern types, and revealed the organization properties of different wave patterns and the dynamical mechanisms when they interact with each other. Moreover, we found a relationship between the emergence probability of local wave patterns and the multimodal structure hierarchy across cortical areas. Our findings reveal the principles of spatiotemporal wave dynamics of spontaneous activities and associate them with the underlying hierarchical architecture across the cortex.


Asunto(s)
Corteza Cerebral/fisiología , Fenómenos Electrofisiológicos/fisiología , Vías Nerviosas/fisiología , Algoritmos , Anestesia , Animales , Mapeo Encefálico , Electroencefalografía , Potenciales Evocados Visuales , Femenino , Masculino , Ratones , Neuronas/fisiología , Corteza Somatosensorial/fisiología
3.
Phys Rev Lett ; 129(4): 048103, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939004

RESUMEN

We investigate the emergence of complex dynamics in networks with heavy-tailed connectivity by developing a non-Hermitian random matrix theory. We uncover the existence of an extended critical regime of spatially multifractal fluctuations between the quiescent and active phases. This multifractal critical phase combines features of localization and delocalization and differs from the edge of chaos in classical networks by the appearance of universal hallmarks of Anderson criticality over an extended region in phase space. We show that the rich nonlinear response properties of the extended critical regime can account for a variety of neural dynamics such as the diversity of timescales, providing a computational advantage for persistent classification in a reservoir setting.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación
4.
J Physiol ; 598(8): 1551-1571, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31944290

RESUMEN

KEY POINTS: We measured fractal (self-similar) fluctuations in ongoing spiking activity in subcortical (lateral geniculate nucleus, LGN) and cortical (area MT) visual areas in anaesthetised marmosets. Cells in the evolutionary ancient koniocellular LGN pathway and in area MT show high-amplitude fractal fluctuations, whereas evolutionarily newer parvocellular and magnocellular LGN cells do not. Spiking activity in koniocellular cells and MT cells shows substantial correlation to the local population activity, whereas activity in parvocellular and magnocellular cells is less correlated with local activity. We develop a model consisting of a fractal process and a global rate modulation which can reproduce and explain the fundamental relationship between fractal fluctuations and population coupling in LGN and MT. The model provides a unified account of apparently disparate aspects of neural spiking activity and can improve our understanding of information processing in evolutionary ancient and modern visual pathways. ABSTRACT: The brain represents and processes information through patterns of spiking activity, which is influenced by local and widescale brain circuits as well as intrinsic neural dynamics. Whether these influences have independent or linked effects on spiking activity is, however, not known. Here we measured spiking activity in two visual centres, the lateral geniculate nucleus (LGN) and cortical area MT, in marmoset monkeys. By combining the Fano-factor time curve, power spectral analysis and rescaled range analysis, we reveal inherent fractal fluctuations of spiking activity in LGN and MT. We found that the evolutionary ancient koniocellular (K) pathway in LGN and area MT exhibits strong fractal fluctuations at short (<1 s) time scales. Parvocellular (P) and magnocellular (M) LGN cells show weaker fractal fluctuations at longer (multi-second) time scales. In both LGN and MT, the amplitude and time scale of fractal fluctuations can explain short and long time scale spiking dynamics. We further show differential neuronal coupling of LGN and MT cells to local population spiking activity. The population coupling is intrinsically linked to fractal fluctuations: neurons showing stronger fluctuations are more strongly correlated to the local population activity. To understand this relationship, we modelled spiking activity using a fractal inhomogeneous Poisson process with dynamic rate, which is the product of an intrinsic stochastic fractal rate and a global modulatory gain. Our model explains the intrinsic links between neuronal spike rate and population coupling in LGN and MT, and establishes a unified account of dynamic spiking properties in afferent visual pathways.


Asunto(s)
Corteza Visual , Animales , Fractales , Cuerpos Geniculados , Neuronas , Vías Visuales
5.
PLoS Comput Biol ; 15(4): e1006902, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30939135

RESUMEN

Experimental studies have begun revealing essential properties of the structural connectivity and the spatiotemporal activity dynamics of cortical circuits. To integrate these properties from anatomy and physiology, and to elucidate the links between them, we develop a novel cortical circuit model that captures a range of realistic features of synaptic connectivity. We show that the model accounts for the emergence of higher-order connectivity structures, including highly connected hub neurons that form an interconnected rich-club. The circuit model exhibits a rich repertoire of dynamical activity states, ranging from asynchronous to localized and global propagating wave states. We find that around the transition between asynchronous and localized propagating wave states, our model quantitatively reproduces a variety of major empirical findings regarding neural spatiotemporal dynamics, which otherwise remain disjointed in existing studies. These dynamics include diverse coupling (correlation) between spiking activity of individual neurons and the population, dynamical wave patterns with variable speeds and precise temporal structures of neural spikes. We further illustrate how these neural dynamics are related to the connectivity properties by analysing structural contributions to variable spiking dynamics and by showing that the rich-club structure is related to the diverse population coupling. These findings establish an integrated account of structural connectivity and activity dynamics of local cortical circuits, and provide new insights into understanding their working mechanisms.


Asunto(s)
Corteza Cerebral/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Potenciales de Acción , Animales , Corteza Cerebral/citología , Biología Computacional , Simulación por Computador , Humanos , Vías Nerviosas/fisiología , Neuronas/fisiología , Análisis Espacio-Temporal
6.
PLoS Comput Biol ; 14(12): e1006643, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30507937

RESUMEN

There is growing evidence that population-level brain activity is often organized into propagating waves that are structured in both space and time. Such spatiotemporal patterns have been linked to brain function and observed across multiple recording methodologies and scales. The ability to detect and analyze these patterns is thus essential for understanding the working mechanisms of neural circuits. Here we present a mathematical and computational framework for the identification and analysis of multiple classes of wave patterns in neural population-level recordings. By drawing a conceptual link between spatiotemporal patterns found in the brain and coherent structures such as vortices found in turbulent flows, we introduce velocity vector fields to characterize neural population activity. These vector fields are calculated for both phase and amplitude of oscillatory neural signals by adapting optical flow estimation methods from the field of computer vision. Based on these velocity vector fields, we then introduce order parameters and critical point analysis to detect and characterize a diverse range of propagating wave patterns, including planar waves, sources, sinks, spiral waves, and saddle patterns. We also introduce a novel vector field decomposition method that extracts the dominant spatiotemporal structures in a recording. This enables neural data to be represented by the activity of a small number of independent spatiotemporal modes, providing an alternative to existing dimensionality reduction techniques which separate space and time components. We demonstrate the capabilities of the framework and toolbox with simulated data, local field potentials from marmoset visual cortex and optical voltage recordings from whole mouse cortex, and we show that pattern dynamics are non-random and are modulated by the presence of visual stimuli. These methods are implemented in a MATLAB toolbox, which is freely available under an open-source licensing agreement.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Animales , Mapeo Encefálico/estadística & datos numéricos , Callithrix , Biología Computacional , Simulación por Computador , Potenciales Evocados Visuales , Masculino , Ratones , Red Nerviosa/fisiología , Optogenética , Programas Informáticos , Corteza Visual/fisiología
7.
PLoS Comput Biol ; 14(11): e1006590, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419014

RESUMEN

Diverse plasticity mechanisms are orchestrated to shape the spatiotemporal dynamics underlying brain functions. However, why these plasticity rules emerge and how their dynamics interact with neural activity to give rise to complex neural circuit dynamics remains largely unknown. Here we show that both Hebbian and homeostatic plasticity rules emerge from a functional perspective of neuronal dynamics whereby each neuron learns to encode its own activity in the population activity, so that the activity of the presynaptic neuron can be decoded from the activity of its postsynaptic neurons. We explain how a range of experimentally observed plasticity phenomena with widely separated time scales emerge from learning this encoding function, including STDP and its frequency dependence, and metaplasticity. We show that when implemented in neural circuits, these plasticity rules naturally give rise to essential neural response properties, including variable neural dynamics with balanced excitation and inhibition, and approximately log-normal distributions of synaptic strengths, while simultaneously encoding a complex real-world visual stimulus. These findings establish a novel function-based account of diverse plasticity mechanisms, providing a unifying framework relating plasticity, dynamics and neural computation.


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal , Neuronas/fisiología , Potenciales de Acción , Algoritmos , Animales , Corteza Cerebral/fisiología , Simulación por Computador , Potenciales Postsinápticos Excitadores , Homeostasis , Humanos , Aprendizaje/fisiología , Ratones , Red Nerviosa/fisiología , Redes Neurales de la Computación , Ratas , Sinapsis/fisiología
8.
J Neurosci ; 37(42): 10074-10084, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28912155

RESUMEN

Visual stimuli can evoke waves of neural activity that propagate across the surface of visual cortical areas. The relevance of these waves for visual processing is unknown. Here, we measured the phase and amplitude of local field potentials (LFPs) in electrode array recordings from the motion-processing medial temporal (MT) area of anesthetized male marmosets. Animals viewed grating or dot-field stimuli drifting in different directions. We found that, on individual trials, the direction of LFP wave propagation is sensitive to the direction of stimulus motion. Propagating LFP patterns are also detectable in trial-averaged activity, but the trial-averaged patterns exhibit different dynamics and behaviors from those in single trials and are similar across motion directions. We show that this difference arises because stimulus-sensitive propagating patterns are present in the phase of single-trial oscillations, whereas the trial-averaged signal is dominated by additive amplitude effects. Our results demonstrate that propagating LFP patterns can represent sensory inputs at timescales relevant to visually guided behaviors and raise the possibility that propagating activity patterns serve neural information processing in area MT and other cortical areas.SIGNIFICANCE STATEMENT Propagating wave patterns are widely observed in the cortex, but their functional relevance remains unknown. We show here that visual stimuli generate propagating wave patterns in local field potentials (LFPs) in a movement-sensitive area of the primate cortex and that the propagation direction of these patterns is sensitive to stimulus motion direction. We also show that averaging LFP signals across multiple stimulus presentations (trial averaging) yields propagating patterns that capture different dynamic properties of the LFP response and show negligible direction sensitivity. Our results demonstrate that sensory stimuli can modulate propagating wave patterns reliably in the cortex. The relevant dynamics are normally masked by trial averaging, which is a conventional step in LFP signal processing.


Asunto(s)
Corteza Cerebral/fisiología , Percepción de Movimiento/fisiología , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Animales , Callithrix , Potenciales Evocados Visuales/fisiología , Masculino , Corteza Visual/fisiología
9.
Phys Rev Lett ; 121(5): 058101, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30118263

RESUMEN

A deep understanding of the dynamical properties of natural time-varying images is essential for interpreting how they are efficiently processed in the brain. Here we examine natural time-varying images from the perspective of their spatiotemporal patterns and find evidence of dynamical thermodynamic criticality. We further demonstrate that these spatiotemporal patterns ubiquitously organize as localized, propagating patterns. By studying these propagating patterns and their spreading dynamics over time, we demonstrate that the critical dynamics of natural time-varying images belong to the universality class of directed percolation. These critical dynamics have important implications for understanding neural processing of time-varying stimuli.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Modelos Neurológicos , Modelos Teóricos , Red Nerviosa/fisiología , Entropía , Reconocimiento de Normas Patrones Automatizadas
10.
PLoS Comput Biol ; 13(7): e1005669, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28759562

RESUMEN

Recent neural ensemble recordings have established a link between goal-directed spatial decision making and internally generated neural sequences in the hippocampus of rats. To elucidate the synaptic mechanisms of these sequences underlying spatial decision making processes, we develop and investigate a spiking neural circuit model endowed with a combination of two synaptic plasticity mechanisms including spike-timing dependent plasticity (STDP) and synaptic scaling. In this model, the interplay of the combined synaptic plasticity mechanisms and network dynamics gives rise to neural sequences which propagate ahead of the animals' decision point to reach goal locations. The dynamical properties of these forward-sweeping sequences and the rates of correct binary choices executed by these sequences are quantitatively consistent with experimental observations; this consistency, however, is lost in our model when only one of STDP or synaptic scaling is included. We further demonstrate that such sequence-based decision making in our network model can adaptively respond to time-varying and probabilistic associations of cues and goal locations, and that our model performs as well as an optimal Kalman filter model. Our results thus suggest that the combination of plasticity phenomena on different timescales provides a candidate mechanism for forming internally generated neural sequences and for implementing adaptive spatial decision making.


Asunto(s)
Algoritmos , Conducta de Elección/fisiología , Modelos Neurológicos , Modelos Estadísticos , Red Nerviosa/fisiología , Animales , Hipocampo , Plasticidad Neuronal/fisiología , Ratas
11.
J Physiol ; 595(13): 4475-4492, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28116750

RESUMEN

KEY POINTS: How parallel are the primate visual pathways? In the present study, we demonstrate that parallel visual pathways in the dorsal lateral geniculate nucleus (LGN) show distinct patterns of interaction with rhythmic activity in the primary visual cortex (V1). In the V1 of anaesthetized marmosets, the EEG frequency spectrum undergoes transient changes that are characterized by fluctuations in delta-band EEG power. We show that, on multisecond timescales, spiking activity in an evolutionary primitive (koniocellular) LGN pathway is specifically linked to these slow EEG spectrum changes. By contrast, on subsecond (delta frequency) timescales, cortical oscillations can entrain spiking activity throughout the entire LGN. Our results are consistent with the hypothesis that, in waking animals, the koniocellular pathway selectively participates in brain circuits controlling vigilance and attention. ABSTRACT: The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance and attention. In the present study, we investigated how ongoing and visually driven activity in magnocellular (M), parvocellular (P) and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil-anaesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta-band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multisecond timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1-3 s, implying causality. At subsecond timescales, the spiking activity in many cells of all (M, P and K) classes is phase-locked to delta waves in the cortical LFP, and more cells are phase-locked during synchronous cortical states than during asynchronous cortical states. The switch from low-to-high spike rates in K cells does not degrade their visual signalling capacity. By contrast, during asynchronous cortical states, the fidelity of visual signals transmitted by K cells is improved, probably because K cell responses become less rectified. Overall, the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta-frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetized marmosets.


Asunto(s)
Ritmo Delta , Cuerpos Geniculados/fisiología , Corteza Visual/fisiología , Animales , Callithrix , Potenciales Evocados Visuales , Femenino , Masculino , Vías Visuales/fisiología
12.
J Neurosci ; 35(4): 1591-605, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632135

RESUMEN

Cortical neurons in vivo fire quite irregularly. Previous studies about the origin of such irregular neural dynamics have given rise to two major models: a balanced excitation and inhibition model, and a model of highly synchronized synaptic inputs. To elucidate the network mechanisms underlying synchronized synaptic inputs and account for irregular neural dynamics, we investigate a spatially extended, conductance-based spiking neural network model. We show that propagating wave patterns with complex dynamics emerge from the network model. These waves sweep past neurons, to which they provide highly synchronized synaptic inputs. On the other hand, these patterns only emerge from the network with balanced excitation and inhibition; our model therefore reconciles the two major models of irregular neural dynamics. We further demonstrate that the collective dynamics of propagating wave patterns provides a mechanistic explanation for a range of irregular neural dynamics, including the variability of spike timing, slow firing rate fluctuations, and correlated membrane potential fluctuations. In addition, in our model, the distributions of synaptic conductance and membrane potential are non-Gaussian, consistent with recent experimental data obtained using whole-cell recordings. Our work therefore relates the propagating waves that have been widely observed in the brain to irregular neural dynamics. These results demonstrate that neural firing activity, although appearing highly disordered at the single-neuron level, can form dynamical coherent structures, such as propagating waves at the population level.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Dinámicas no Lineales , Animales , Encéfalo/citología , Simulación por Computador , Red Nerviosa/fisiología , Inhibición Neural , Vías Nerviosas/fisiología , Procesos Estocásticos , Sinapsis/fisiología
13.
J Neurosci ; 35(11): 4657-62, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788682

RESUMEN

Slow brain rhythms are attributed to near-simultaneous (synchronous) changes in activity in neuron populations in the brain. Because they are slow and widespread, synchronous rhythms have not been considered crucial for information processing in the waking state. Here we adapted methods from turbulence physics to analyze δ-band (1-4 Hz) rhythms in local field potential (LFP) activity, in multielectrode recordings from cerebral cortex in anesthetized marmoset monkeys. We found that synchrony contributes only a small fraction (less than one-fourth) to the local spatiotemporal structure of δ-band signals. Rather, δ-band activity is dominated by propagating plane waves and spatiotemporal structures, which we call complex waves. Complex waves are manifest at submillimeter spatial scales, and millisecond-range temporal scales. We show that complex waves can be characterized by their relation to phase singularities within local nerve cell networks. We validate the biological relevance of complex waves by showing that nerve cell spike rates are higher in presence of complex waves than in the presence of synchrony and that there are nonrandom patterns of evolution from one type of complex wave to another. We conclude that slow brain rhythms predominantly indicate spatiotemporally organized activity in local nerve cell circuits, not synchronous activity within and across brain regions.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Ritmo Delta/fisiología , Animales , Callithrix , Electroencefalografía/métodos , Masculino
14.
J Comput Neurosci ; 40(3): 247-68, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26922679

RESUMEN

Memory retrieval is of central importance to a wide variety of brain functions. To understand the dynamic nature of memory retrieval and its underlying neurophysiological mechanisms, we develop a biologically plausible spiking neural circuit model, and demonstrate that free memory retrieval of sequences of events naturally arises from the model under the condition of excitation-inhibition (E/I) balance. Using the mean-field model of the spiking circuit, we gain further theoretical insights into how such memory retrieval emerges. We show that the spiking neural circuit model quantitatively reproduces several salient features of free memory retrieval, including its semantic proximity effect and log-normal distributions of inter-retrieval intervals. In addition, we demonstrate that our model can serve as a platform to examine memory retrieval deficits observed in neuropsychiatric diseases such as Parkinson's and Alzheimer's diseases. Furthermore, our model allows us to make novel and experimentally testable predictions, such as the prediction that there are long-range correlations in the sequences of retrieved items.


Asunto(s)
Recuerdo Mental/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Dinámicas no Lineales , Potenciales de Acción/fisiología , Humanos
15.
Neural Comput ; 27(2): 255-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25514109

RESUMEN

Bump attractors are localized activity patterns that can self-sustain after stimulus presentation, and they are regarded as the neural substrate for a host of perceptual and cognitive processes. One of the characteristic features of bump attractors is that they are neutrally stable, so that noisy inputs cause them to drift away from their initial locations, severely impairing the accuracy of bump location-dependent neural coding. Previous modeling studies of such noise-induced drifting activity of bump attractors have focused on normal diffusive dynamics, often with an assumption that noisy inputs are uncorrelated. Here we show that long-range temporal correlations and spatial correlations in neural inputs generated by multiple interacting bumps cause them to drift in an anomalous subdiffusive way. This mechanism for generating subdiffusive dynamics of bump attractors is further analyzed based on a generalized Langevin equation. We demonstrate that subdiffusive dynamics can significantly improve the coding accuracy of bump attractors, since the variance of the bump displacement increases sublinearly over time and is much smaller than that of normal diffusion. Furthermore, we reanalyze existing psychophysical data concerning the spread of recalled cue position in spatial working memory tasks and show that its variance increases sublinearly with time, consistent with subdiffusive dynamics of bump attractors. Based on the probability density function of bump position, we also show that the subdiffusive dynamics result in a long-tailed decay of firing rate, greatly extending the duration of persistent activity.

16.
Commun Biol ; 7(1): 550, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719883

RESUMEN

Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.


Asunto(s)
Atención , Modelos Neurológicos , Atención/fisiología , Humanos , Corteza Cerebral/fisiología , Animales , Red Nerviosa/fisiología , Percepción Visual/fisiología , Neuronas/fisiología , Cognición/fisiología
17.
Neural Comput ; 25(11): 2833-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24001345

RESUMEN

Spike-timing-dependent plasticity (STDP) is an important synaptic dynamics that is capable of shaping the complex spatiotemporal activity of neural circuits. In this study, we examine the effects of STDP on the spatiotemporal patterns of a spatially extended, two-dimensional spiking neural circuit. We show that STDP can promote the formation of multiple, localized spiking wave patterns or multiple spike timing sequences in a broad parameter space of the neural circuit. Furthermore, we illustrate that the formation of these dynamic patterns is due to the interaction between the dynamics of ongoing patterns in the neural circuit and STDP. This interaction is analyzed by developing a simple model able to capture its essential dynamics, which give rise to symmetry breaking. This occurs in a fundamentally self-organizing manner, without fine-tuning of the system parameters. Moreover, we find that STDP provides a synaptic mechanism to learn the paths taken by spiking waves and modulate the dynamics of their interactions, enabling them to be regulated. This regulation mechanism has error-correcting properties. Our results therefore highlight the important roles played by STDP in facilitating the formation and regulation of spiking wave patterns that may have crucial functional roles in brain information processing.


Asunto(s)
Potenciales de Acción , Encéfalo/fisiología , Modelos Teóricos , Redes Neurales de la Computación , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Animales , Humanos , Modelos Neurológicos
18.
Biol Cybern ; 107(1): 1-13, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22986511

RESUMEN

Refractoriness is one of the most fundamental states of neural firing activity, in which neurons that have just fired are unable to produce another spike, regardless of the strength of afferent stimuli. Another essential and unavoidable feature of neural systems is the existence of noise. To study the role of these essential factors in spatiotemporal pattern formation in neural systems, a spatially expended neural network model is constructed, with the dynamics of its individual neurons capturing the three most essential states of the neural firing behavior: firing, refractory and resting, and the network topology consistent with the widely observed center-surround coupling manner in the real brain. By changing the refractory period with and without noise in a systematic way in the network, it is shown numerically and analytically that without refractoriness, or when the refractory period is smaller than a certain value, the collective activity pattern of the system consists of localized, oscillating patterns. However, when the refractory period is greater than a certain value, crescent-shaped, localized propagating patterns emerge in the presence of noise. It is further illustrated that the formation of the dynamical spiking patterns is due to a symmetry breaking mechanism, refractoriness-induced symmetry breaking; that is generated by the interplay of noise and refractoriness in the network model. This refractoriness-induced symmetry breaking provides a novel perspective on the emergence of localized, spiking wave patterns or spike timing sequences as ubiquitously observed in real neural systems; it therefore suggests that refractoriness may benefit neural systems in their temporal information processing, rather than limiting the performance of neurons, as has been conventionally thought. Our results also highlight the importance of considering noise in studying spatially extended neural systems, where it may facilitate the formation of spatiotemporal order.


Asunto(s)
Neuronas/fisiología , Ruido , Potenciales de Acción , Vías Aferentes , Modelos Teóricos , Procesos Estocásticos
19.
Nat Hum Behav ; 7(7): 1196-1215, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322235

RESUMEN

The large-scale activity of the human brain exhibits rich and complex patterns, but the spatiotemporal dynamics of these patterns and their functional roles in cognition remain unclear. Here by characterizing moment-by-moment fluctuations of human cortical functional magnetic resonance imaging signals, we show that spiral-like, rotational wave patterns (brain spirals) are widespread during both resting and cognitive task states. These brain spirals propagate across the cortex while rotating around their phase singularity centres, giving rise to spatiotemporal activity dynamics with non-stationary features. The properties of these brain spirals, such as their rotational directions and locations, are task relevant and can be used to classify different cognitive tasks. We also demonstrate that multiple, interacting brain spirals are involved in coordinating the correlated activations and de-activations of distributed functional regions; this mechanism enables flexible reconfiguration of task-driven activity flow between bottom-up and top-down directions during cognitive processing. Our findings suggest that brain spirals organize complex spatiotemporal dynamics of the human brain and have functional correlates to cognitive processing.


Asunto(s)
Ondas Encefálicas , Encéfalo , Cognición , Encéfalo/fisiología , Ondas Encefálicas/fisiología , Cognición/fisiología , Estudios de Cohortes , Conjuntos de Datos como Asunto , Lenguaje , Imagen por Resonancia Magnética , Matemática , Memoria a Corto Plazo , Narración , Descanso , Rotación , Humanos
20.
Nat Commun ; 14(1): 1434, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918572

RESUMEN

Rich spatiotemporal dynamics of cortical activity, including complex and diverse wave patterns, have been identified during unconscious and conscious brain states. Yet, how these activity patterns emerge across different levels of wakefulness remain unclear. Here we study the evolution of wave patterns utilizing data from high spatiotemporal resolution optical voltage imaging of mice transitioning from barbiturate-induced anesthesia to wakefulness (N = 5) and awake mice (N = 4). We find that, as the brain transitions into wakefulness, there is a reduction in hemisphere-scale voltage waves, and an increase in local wave events and complexity. A neural mass model recapitulates the essential cellular-level features and shows how the dynamical competition between global and local spatiotemporal patterns and long-range connections can explain the experimental observations. These mechanisms possibly endow the awake cortex with enhanced integrative processing capabilities.


Asunto(s)
Anestesia , Estado de Conciencia , Ratones , Animales , Vigilia , Encéfalo , Inconsciencia , Corteza Cerebral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA