RESUMEN
Recent studies have provided promising evidence that neuroimaging data can predict treatment outcomes for patients with major depressive disorder (MDD). As most of these studies had small sample sizes, a meta-analysis is warranted to identify the most robust findings and imaging modalities, and to compare predictive outcomes obtained in magnetic resonance imaging (MRI) and studies using clinical and demographic features. We conducted a literature search from database inception to July 22, 2023, to identify studies using pretreatment clinical or brain MRI features to predict treatment outcomes in patients with MDD. Two meta-analyses were conducted on clinical and MRI studies, respectively. The meta-regression was employed to explore the effects of covariates and compare the predictive performance between clinical and MRI groups, as well as across MRI modalities and intervention subgroups. Meta-analysis of 13 clinical studies yielded an area under the curve (AUC) of 0.73, while in 44 MRI studies, the AUC was 0.89. MRI studies showed a higher sensitivity than clinical studies (0.78 vs. 0.62, Z = 3.42, P = 0.001). In MRI studies, resting-state functional MRI (rsfMRI) exhibited a higher specificity than task-based fMRI (tbfMRI) (0.79 vs. 0.69, Z = -2.86, P = 0.004). No significant differences in predictive performance were found between structural and functional MRI, nor between different interventions. Of note, predictive MRI features for treatment outcomes in studies using antidepressants were predominantly located in the limbic and default mode networks, while studies of electroconvulsive therapy (ECT) were restricted mainly to the limbic network. Our findings suggest a promise for pretreatment brain MRI features to predict MDD treatment outcomes, outperforming clinical features. While tasks in tbfMRI studies differed, those studies overall had less predictive utility than rsfMRI data. Overlapping but distinct network-level measures predicted antidepressants and ECT outcomes. Future studies are needed to predict outcomes using multiple MRI features, and to clarify whether imaging features predict outcomes generally or differ depending on treatments.
RESUMEN
Postictal generalized electroencephalographic suppression is a possible electroencephalographic marker for sudden unexpected death in epilepsy. We aimed to investigate the cortical surface area abnormalities in epilepsy patients with postictal generalized electroencephalographic suppression. We retrospectively included 30 epilepsy patients with postictal generalized electroencephalographic suppression (PGES+), 21 epilepsy patients without postictal generalized electroencephalographic suppression (PGES-), and 30 healthy controls. Surface-based analysis on high-resolution T1-weighted images was conducted and cortical surface areas were compared among the three groups, alongside correlation analyses with seizure-related clinical variables. Compared with PGES- group, we identified reduced surface area in the bilateral insula with more extensive distribution in the right hemisphere in PGES+ group. The reduced right insular surface area was associated with younger seizure-onset age. When compared with healthy controls, PGES- group presented reduced surface area in the left caudal middle frontal gyrus; PGES+ group presented more widespread surface area reductions in the right posterior cingulate gyrus, left postcentral gyrus, middle frontal gyrus, and middle temporal gyrus. Our results suggested cortical microstructural impairment in patients with postictal generalized electroencephalographic suppression. The significant surface area reductions in the insular cortex supported the autonomic network involvement in the pathology of postictal generalized electroencephalographic suppression, and its right-sided predominance suggested the potential shared abnormal brain network for postictal generalized electroencephalographic suppression and sudden unexpected death in epilepsy.
Asunto(s)
Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Humanos , Estudios Retrospectivos , Epilepsia/diagnóstico por imagen , Electroencefalografía/métodos , Convulsiones , Muerte SúbitaRESUMEN
Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.
Asunto(s)
Antipsicóticos , Corteza Cerebral , Lateralidad Funcional , Imagen por Resonancia Magnética , Esquizofrenia , Caracteres Sexuales , Humanos , Femenino , Masculino , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Adulto , Corteza Cerebral/diagnóstico por imagen , Adulto Joven , Antipsicóticos/uso terapéutico , Lateralidad Funcional/fisiología , Adolescente , Mapeo EncefálicoRESUMEN
Although proline-rich transmembrane protein 2 is the primary causative gene of paroxysmal kinesigenic dyskinesia, its effects on the brain structure of paroxysmal kinesigenic dyskinesia patients are not yet clear. Here, we explored the influence of proline-rich transmembrane protein 2 mutations on similarity-based gray matter morphological networks in individuals with paroxysmal kinesigenic dyskinesia. A total of 51 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations, 55 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, and 80 healthy controls participated in the study. We analyzed the structural connectome characteristics across groups by graph theory approaches. Relative to paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation and healthy controls, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations exhibited a notable increase in characteristic path length and a reduction in both global and local efficiency. Relative to healthy controls, both patient groups showed reduced nodal metrics in right postcentral gyrus, right angular, and bilateral thalamus; Relative to healthy controls and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations showed almost all reduced nodal centralities and structural connections in cortico-basal ganglia-thalamo-cortical circuit including bilateral supplementary motor area, bilateral pallidum, and right caudate nucleus. Finally, we used support vector machine by gray matter network matrices to classify paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, achieving an accuracy of 73%. These results show that proline-rich transmembrane protein 2 related gray matter network deficits may contribute to paroxysmal kinesigenic dyskinesia, offering new insights into its pathophysiological mechanisms.
Asunto(s)
Distonía , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Mutación , Distonía/diagnóstico por imagen , Distonía/genética , Encéfalo/diagnóstico por imagen , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genéticaRESUMEN
Neuroimage studies have reported functional connectome abnormalities in posttraumatic stress disorder (PTSD), especially in adults. However, these studies often treated the brain as a static network, and time-variance of connectome topology in pediatric posttraumatic stress disorder remain unclear. To explore case-control differences in dynamic connectome topology, resting-state functional magnetic resonance imaging data were acquired from 24 treatment-naïve non-comorbid pediatric posttraumatic stress disorder patients and 24 demographically matched trauma-exposed non-posttraumatic stress disorder controls. A graph-theoretic analysis was applied to construct time-varying modular structure of whole-brain networks by maximizing the multilayer modularity. Network switching rate at the global, subnetwork, and nodal levels were calculated and compared between posttraumatic stress disorder and trauma-exposed non-posttraumatic stress disorder groups, and their associations with posttraumatic stress disorder symptom severity and sex interactions were explored. At the global level, individuals with posttraumatic stress disorder exhibited significantly lower network switching rates compared to trauma-exposed non-posttraumatic stress disorder controls. This difference was mainly involved in default-mode and dorsal attention subnetworks, as well as in inferior temporal and parietal brain nodes. Posttraumatic stress disorder symptom severity was negatively correlated with switching rate in the global network and default mode network. No significant differences were observed in the interaction between diagnosis and sex/age. Pediatric posttraumatic stress disorder is associated with dynamic reconfiguration of brain networks, which may provide insights into the biological basis of this disorder.
Asunto(s)
Conectoma , Trastornos por Estrés Postraumático , Adulto , Humanos , Niño , Trastornos por Estrés Postraumático/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Encéfalo , Conectoma/métodosRESUMEN
Behavioral addiction (BA) is a conceptually new addictive phenotype characterized by compulsive reward-seeking behaviors despite adverse consequences. Currently, its underlying neurogenetic mechanism remains unclear. Here, this study aimed to investigate the association between cortical thickness (CTh) and genetic phenotypes in BA. We conducted a systematic search in five databases and extracted gene expression data from the Allen Human Brain Atlas. Meta-analysis of 10 studies (343 addicted individuals and 355 controls) revealed that the BA group showed thinner CTh in the precuneus, postcentral gyrus, orbital-frontal cortex, and dorsolateral prefrontal cortex (P < 0.005). Meta-regression showed that the CTh in the precuneus and postcentral gyrus were negatively associated with the addiction severity (P < 0.0005). More importantly, the CTh phenotype of BA was spatially correlated with the expression of 12 genes (false discovery rate [FDR] < 0.05), and the dopamine D2 receptor had the highest correlation (rho = 0.55). Gene enrichment analysis further revealed that the 12 genes were involved in the biological processes of behavior regulation and response to stimulus (FDR < 0.05). In conclusion, our findings demonstrated the thinner CTh in cognitive control-related brain areas in BA, which could be associated with the expression of genes involving dopamine metabolism and behavior regulation.
Asunto(s)
Conducta Adictiva , Corteza Cerebral , Humanos , Conducta Adictiva/genética , Conducta Adictiva/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Masculino , Adulto , Femenino , Grosor de la Corteza Cerebral , Receptores de Dopamina D2/genética , Imagen por Resonancia MagnéticaRESUMEN
The hippocampus is one of the brain regions most vulnerable to inflammatory insults, and the relationships between peripheral inflammation and hippocampal subfields in patients with schizophrenia remain unclear. In this study, forty-six stably medicated patients with schizophrenia and 48 demographically matched healthy controls (HCs) were recruited. The serum levels of IL - 1ß, IL-6, IL-10, and IL-12p70 were measured, and 3D high-resolution T1-weighted magnetic resonance imaging was performed. The IL levels and hippocampal subfield volumes were both compared between patients and HCs. The associations of altered IL levels with hippocampal subfield volumes were assessed in patients. Patients with schizophrenia demonstrated higher serum levels of IL-6 and IL-10 but lower levels of IL-12p70 than HCs. In patients, the levels of IL-6 were positively correlated with the volumes of the left granule cell layer of the dentate gyrus (GCL) and cornu Ammonis (CA) 4, while the levels of IL-10 were negatively correlated with the volumes of those subfields. IL-6 and IL-10 might have antagonistic roles in atrophy of the left GCL and CA4. This suggests a complexity of peripheral cytokine dysregulation and the potential for its selective effects on hippocampal substructures, which might be related to the pathophysiology of schizophrenia.
Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/sangre , Masculino , Femenino , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Adulto , Interleucinas/sangre , Interleucinas/metabolismo , Persona de Mediana Edad , Tamaño de los ÓrganosRESUMEN
Trauma exposure may precipitate a cascade of plastic modifications within the intrinsic activity of brain regions, but it remains unclear which regions could be responsible for the development of post-traumatic stress disorder based on intrinsic activity. To elucidate trauma-related and post-traumatic stress disorder-related alterations in cortical intrinsic activity at the whole-brain level, we recruited 47 survivors diagnosed with post-traumatic stress disorder, 64 trauma-exposed controls from a major earthquake, and 46 age- and sex-matched healthy controls. All subjects were scanned with an echo-planar imaging sequence, and 5 parameters including the amplitude of low-frequency fluctuations, fractional amplitude of low-frequency fluctuations, regional homogeneity, degree centrality, and voxel-mirrored homotopic connectivity were calculated. We found both post-traumatic stress disorder patients and trauma-exposed controls exhibited decreased amplitude of low-frequency fluctuations in the bilateral posterior cerebellum and inferior temporal gyrus, decreased fractional amplitude of low-frequency fluctuation and regional homogeneity in the bilateral anterior cerebellum, and decreased fractional amplitude of low-frequency fluctuation in the middle occipital gyrus and cuneus compared to healthy controls, and these impairments were more severe in post-traumatic stress disorder patients than in trauma-exposed controls. Additionally, fractional amplitude of low-frequency fluctuation in left cerebellum was positively correlated with Clinician-Administered PTSD Scale scores in post-traumatic stress disorder patients. We identified brain regions that might be responsible for the emergence of post-traumatic stress disorder, providing important information for the treatment of this disorder.
Asunto(s)
Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/psicología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Imagen Eco-Planar , Terremotos , Imagen por Resonancia Magnética , Adulto Joven , Mapeo EncefálicoRESUMEN
While some studies have used a transdiagnostic approach to relate depression to metabolic or functional brain alterations, the structural substrate of depression across clinical diagnostic categories is underexplored. In a cross-sectional study of 52 patients with major depressive disorder and 51 with post-traumatic stress disorder, drug-naïve, and spanning mild to severe depression severity, we examined transdiagnostic depressive correlates with regional gray matter volume and the topological properties of gray matter-based networks. Locally, transdiagnostic depression severity correlated positively with gray matter volume in the right middle frontal gyrus and negatively with nodal topological properties of gray matter-based networks in the right amygdala. Globally, transdiagnostic depression severity correlated positively with normalized characteristic path length, a measure implying brain integration ability. Compared with 62 healthy control participants, both major depressive disorder and post-traumatic stress disorder patients showed altered nodal properties in regions of the fronto-limbic-striatal circuit, and global topological organization in major depressive disorder in particular was characterized by decreased integration and segregation. These findings provide evidence for a gray matter-based structural substrate underpinning depression, with the prefrontal-amygdala circuit a potential predictive marker for depressive symptoms across clinical diagnostic categories.
Asunto(s)
Amígdala del Cerebelo , Trastorno Depresivo Mayor , Sustancia Gris , Imagen por Resonancia Magnética , Corteza Prefrontal , Trastornos por Estrés Postraumático , Humanos , Masculino , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Femenino , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/patología , Adulto , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Imagen por Resonancia Magnética/métodos , Estudios Transversales , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mutación , Estudios RetrospectivosRESUMEN
Although aberrant static functional brain network activity has been reported in schizophrenia, little is known about how the dynamics of neural function are altered in first-episode schizophrenia and are modulated by antipsychotic treatment. The baseline resting-state functional magnetic resonance imaging data were acquired from 122 first-episode drug-naïve schizophrenia patients and 128 healthy controls (HCs), and 44 patients were rescanned after 1-year of antipsychotic treatment. Multilayer network analysis was applied to calculate the network switching rates between brain states. Compared to HCs, schizophrenia patients at baseline showed significantly increased network switching rates. This effect was observed mainly in the sensorimotor (SMN) and dorsal attention networks (DAN), and in temporal and parietal regions at the nodal level. Switching rates were reduced after 1-year of antipsychotic treatment at the global level and in DAN. Switching rates at baseline at the global level and in the inferior parietal lobule were correlated with the treatment-related reduction of negative symptoms. These findings suggest that instability of functional network activity plays an important role in the pathophysiology of acute psychosis in early-stage schizophrenia. The normalization of network stability after antipsychotic medication suggests that this effect may represent a systems-level mechanism for their therapeutic efficacy.
Asunto(s)
Antipsicóticos , Encéfalo , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Antipsicóticos/uso terapéutico , Adulto Joven , Adulto , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/efectos de los fármacos , Mapeo Encefálico/métodos , Adolescente , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagenRESUMEN
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Imagen por Resonancia Magnética , Encéfalo/patología , Corteza Motora/patologíaRESUMEN
Major depressive disorder demonstrated sex differences in prevalence and symptoms, which were more pronounced during adolescence. Yet, research on sex-specific brain network characteristics in adolescent-onset major depressive disorder remains limited. This study investigated sex-specific and nonspecific alterations in resting-state functional connectivity of three core networks (frontoparietal network, salience network, and default mode network) and subcortical networks in adolescent-onset major depressive disorder, using seed-based resting-state functional connectivity in 50 medication-free patients with adolescent-onset major depressive disorder and 56 healthy controls. Irrespective of sex, compared with healthy controls, adolescent-onset major depressive disorder patients showed hypoconnectivity between bilateral hippocampus and right superior temporal gyrus (default mode network). More importantly, we further found that females with adolescent-onset major depressive disorder exhibited hypoconnectivity within the default mode network (medial prefrontal cortex), and between the subcortical regions (i.e. amygdala, striatum, and thalamus) with the default mode network (angular gyrus and posterior cingulate cortex) and the frontoparietal network (dorsal prefrontal cortex), while the opposite patterns of resting-state functional connectivity alterations were observed in males with adolescent-onset major depressive disorder, relative to their sex-matched healthy controls. Moreover, several sex-specific resting-state functional connectivity changes were correlated with age of onset, sleep disturbance, and anxiety in adolescent-onset major depressive disorder with different sex. These findings suggested that these sex-specific resting-state functional connectivity alterations may reflect the differences in brain development or processes related to early illness onset, underscoring the necessity for sex-tailored diagnostic and therapeutic approaches in adolescent-onset major depressive disorder.
Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Red Nerviosa , Caracteres Sexuales , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Adolescente , Masculino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven , Edad de Inicio , Mapeo Encefálico , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagenRESUMEN
Systemic infiltration is a hallmark of diffuse midline glioma pathogenesis, which can trigger distant disturbances in cortical structure. However, the existence and effects of these changes have been underexamined. This study aimed to investigate whole-brain cortical myelin and thickness alternations induced by diffuse midline glioma. High-resolution T1- and T2-weighted images were acquired from 90 patients with diffuse midline glioma with H3 K27-altered and 64 patients with wild-type and 86 healthy controls. Cortical thickness and myelin content was calculated using Human Connectome Project pipeline. Significant differences in cortical thickness and myelin content were detected among groups. Short-term survival prediction model was constructed using automated machine learning. Compared with healthy controls, diffuse midline glioma with H3 K27-altered patients showed significantly reduced cortical myelin in bilateral precentral gyrus, postcentral gyrus, insular, parahippocampal gyrus, fusiform gyrus, and cingulate gyrus, whereas diffuse midline glioma with H3 K27 wild-type patients exhibited well-preserved myelin content. Furtherly, when comparing diffuse midline glioma with H3 K27-altered and diffuse midline glioma with H3 K27 wild-type, the decreased cortical thickness in parietal and occipital regions along with demyelination in medial orbitofrontal cortex was observed in diffuse midline glioma with H3 K27-altered. Notably, a combination of cortical features and tumor radiomics allowed short-term survival prediction with accuracy 0.80 and AUC 0.84. These findings may aid clinicians in tailoring therapeutic approaches based on cortical characteristics, potentially enhancing the efficacy of current and future treatment modalities.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Histonas/genética , Glioma/diagnóstico por imagen , Vaina de Mielina , Encéfalo/patología , MutaciónRESUMEN
This study aimed to investigate the relationship between exercise addiction and brain structure in middle-older individuals, and to examine the role of self-efficacy in mediating physiological changes associated with exercise addiction. A total of 133 patients exhibiting symptoms of exercise addiction were recruited for this study (male = 43, age 52.86 ± 11.78 years). Structural magnetic resonance imaging and behavioral assessments were administered to assess the study population. Voxel-based morphological analysis was conducted using SPM12 software. Mediation analysis was employed to explore the potential neuropsychological mechanism of self-efficacy in relation to exercise addiction. The findings revealed a positive correlation between exercise addiction and gray matter volume in the right inferior temporal region and the right hippocampus. Conversely, there was a negative correlation with gray matter volume in the left Rolandic operculum. Self-efficacy was found to indirectly influence exercise addiction by affecting right inferior temporal region gray matter volume and acted as a mediating variable in the relationship between the gray matter volume of right inferior temporal region and exercise addiction. In summary, this study elucidates the link between exercise addiction and brain structure among middle-older individuals. It uncovers the intricate interplay among exercise addiction, brain structure, and psychological factors. These findings enhance our comprehension of exercise addiction and offer valuable insights for the development of interventions and treatments.
Asunto(s)
Encéfalo , Autoeficacia , Humanos , Masculino , Adulto , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Lóbulo Parietal , Programas Informáticos , Imagen por Resonancia MagnéticaRESUMEN
The perceptual dysfunctions have been fundamental causes of cognitive and emotional problems in patients with major depressive disorder. However, visual system impairment in depression has been underexplored. Here, we explored functional connectivity in a large cohort of first-episode medication-naïve patients with major depressive disorder (n = 190) and compared it with age- and sex-matched healthy controls (n = 190). A recently developed individual-oriented approach was applied to parcellate the cerebral cortex into 92 regions of interest using resting-state functional magnetic resonance imaging data. Significant reductions in functional connectivities were observed between the right lateral occipitotemporal junction within the visual network and 2 regions of interest within the sensorimotor network in patients. The volume of right lateral occipitotemporal junction was also significantly reduced in major depressive disorder patients, indicating that this visual region is anatomically and functionally impaired. Behavioral correlation analysis showed that the reduced functional connectivities were significantly associated with inhibition control in visual-motor processing in patients. Taken together, our data suggest that functional connectivity between visual network and sensorimotor network already shows a significant reduction in the first episode of major depressive disorder, which may interfere with the inhibition control in visual-motor processing. The lateral occipitotemporal junction may be a hub of disconnection and may play a role in the pathophysiology of major depressive disorder.
Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Corteza Cerebral , Percepción Visual , Red NerviosaRESUMEN
BACKGROUND: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with overlapping behavioral features and genetic etiology. While brain cortical thickness (CTh) alterations have been reported in ASD and ADHD separately, the degree to which ASD and ADHD are associated with common and distinct patterns of CTh changes is unclear. METHODS: We searched PubMed, Web of Science, Embase, and Science Direct from inception to 8 December 2023 and included studies of cortical thickness comparing youth (age less than 18) with ASD or ADHD with typically developing controls (TDC). We conducted a comparative meta-analysis of vertex-based studies to identify common and distinct CTh alterations in ASD and ADHD. RESULTS: Twelve ASD datasets involving 458 individuals with ASD and 10 ADHD datasets involving 383 individuals with ADHD were included in the analysis. Compared to TDC, ASD showed increased CTh in bilateral superior frontal gyrus, left middle temporal gyrus, and right superior parietal lobule (SPL) and decreased CTh in right temporoparietal junction (TPJ). ADHD showed decreased CTh in bilateral precentral gyri, right postcentral gyrus, and right TPJ relative to TDC. Conjunction analysis showed both disorders shared reduced TPJ CTh located in default mode network (DMN). Comparative analyses indicated ASD had greater CTh in right SPL and TPJ located in dorsal attention network and thinner CTh in right TPJ located in ventral attention network than ADHD. CONCLUSIONS: These results suggest shared thinner TPJ located in DMN is an overlapping neurobiological feature of ASD and ADHD. This alteration together with SPL alterations might be related to altered biological motion processing in ASD, while abnormalities in sensorimotor systems may contribute to behavioral control problems in ADHD. The disorder-specific thinner TPJ located in disparate attention networks provides novel insight into distinct symptoms of attentional deficits associated with the two neurodevelopmental disorders. TRIAL REGISTRATION: PROSPERO CRD42022370620. Registered on November 9, 2022.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Humanos , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , NeurobiologíaRESUMEN
Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.
Asunto(s)
Medios de Contraste , Hígado , Imagen por Resonancia Magnética , Manganeso , Manganeso/química , Hígado/diagnóstico por imagen , Hígado/metabolismo , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste/química , Medios de Contraste/síntesis química , Humanos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Ratones , Complejos de Coordinación/química , Complejos de Coordinación/síntesis químicaRESUMEN
BACKGROUND: Alterations in brain functional connectivity (FC) have been frequently reported in adolescent major depressive disorder (MDD). However, there are few studies of dynamic FC analysis, which can provide information about fluctuations in neural activity related to cognition and behavior. The goal of the present study was therefore to investigate the dynamic aspects of FC in adolescent MDD patients. METHODS: Resting-state functional magnetic resonance imaging data were acquired from 94 adolescents with MDD and 78 healthy controls. Independent component analysis, a sliding-window approach, and graph-theory methods were used to investigate the potential differences in dynamic FC properties between the adolescent MDD patients and controls. RESULTS: Three main FC states were identified, State 1 which was predominant, and State 2 and State 3 which occurred less frequently. Adolescent MDD patients spent significantly more time in the weakly-connected and relatively highly-modularized State 1, spent significantly less time in the strongly-connected and low-modularized State 2, and had significantly higher variability of both global and local efficiency, compared to the controls. Classification of patients with adolescent MDD was most readily performed based on State 1 which exhibited disrupted intra- and inter-network FC involving multiple functional networks. CONCLUSIONS: Our study suggests local segregation and global integration impairments and segregation-integration imbalance of functional networks in adolescent MDD patients from the perspectives of dynamic FC. These findings may provide new insights into the neurobiology of adolescent MDD.
Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Adolescente , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Estudios de Casos y Controles , Conectoma , Mapeo Encefálico/métodosRESUMEN
BACKGROUND: Epigenetic changes are plausible molecular sources of clinical heterogeneity in schizophrenia. A subgroup of schizophrenia patients with elevated inflammatory or immune-dysregulation has been reported by previous studies. However, little is known about epigenetic changes in genes related to immune activation in never-treated first-episode patients with schizophrenia (FES) and its consistency with that in treated long-term ill (LTS) patients. METHODS: In this study, epigenome-wide profiling with a DNA methylation array was applied using blood samples of both FES and LTS patients, as well as their corresponding healthy controls. Non-negative matrix factorization (NMF) and k -means clustering were performed to parse heterogeneity of schizophrenia, and the consistency of subtyping results from two cohorts. was tested. RESULTS: This study identified a subtype of patients in FES participants (47.5%) that exhibited widespread methylation level alterations of genes enriched in immune cell activity and a significantly higher proportion of neutrophils. This clustering of FES patients was validated in LTS patients, with high correspondence in epigenetic and clinical features across two cohorts. CONCLUSIONS: In summary, this study demonstrated a subtype of schizophrenia patients across both FES and LTS cohorts, defined by widespread alterations in methylation profile of genes related to immune function and distinguishing clinical features. This finding illustrates the promise of novel treatment strategies targeting immune dysregulation for a subpopulation of schizophrenia patients.