Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Microb Cell Fact ; 22(1): 60, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998045

RESUMEN

BACKGROUND: Orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid, OA) and its structural analog o-Orsellinaldehyde, have become widely used intermediates in clinical drugs synthesis. Although the research on the biosynthesis of such compounds has made significant progress, due to the lack of suitable hosts, there is still far from the industrial production of such compounds based on synthetic biology. RESULTS: With the help of genome mining, we found a polyketide synthase (PKS, HerA) in the genome of the Hericium erinaceus, which shares 60% amino acid sequence homology with ArmB from Armillaria mellea, an identified PKS capable of synthesizing OA. To characterize the function of HerA, we cloned herA and heterologously expressed it in Aspergillus oryzae, and successfully detected the production of OA. Subsequently, the introduction of an incomplete PKS (Pks5) from Ustilago maydis containing only three domains (AMP-ACP-R), which was into herA-containing A. oryzae, the resulted in the production of o-Orsellinaldehyde. Considering the economic value of OA and o-Orsellinaldehyde, we then optimized the yield of these compounds in A. oryzae. The screening showed that when maltose was used as carbon source, the yields of OA and o-Orsellinaldehyde were 57.68 mg/L and 15.71 mg/L respectively, while the yields were 340.41 mg/Kg and 84.79 mg/Kg respectively in rice medium for 10 days. CONCLUSIONS: Herein, we successfully expressed the genes of basidiomycetes using A. oryzae heterologous host. As a fungus of ascomycetes, which not only correctly splices genes of basidiomycetes containing multiple introns, but also efficiently produces their metabolites. This study highlights that A. oryzae is an excellent host for the heterologous production of fungal natural products, and has the potential to become an efficient chassis for the production of basidiomycete secondary metabolites in synthetic biology.


Asunto(s)
Agaricales , Aspergillus oryzae , Policétidos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Policétidos/metabolismo , Catecoles/metabolismo
2.
Genomics ; 112(3): 2393-2399, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31978421

RESUMEN

Hericium erinaceus is a well-known culinary and medicinal mushroom in China. The biological and genetic studies on this mushroom is rare, thereby hindering the breeding of elite cultivars. Herein, we performed de novo sequencing and assembly of H. erinaceus monokaryon CS-4 genome using the Illumina and PacBio platform. The generated genome was 41.2 Mb in size with a N50 scaffold size of 3.2 Mb, and encoded 10,620 putative predicted genes. A wide spectrum of carbohydrate-active enzymes, with the total number of 341 CAZymes, involved in lignocellulose degradation were identified in H. erinaceus. A total of 447 transcription factors were identified. This present study also characterized genome-wide microsatellites and developed markers in H. erinaceus. A comprehensive microsatellite markers database (HeSSRDb) containing the information of 904 markers was generated. These genomic resources and newly-designed molecular markers would enrich the toolbox for biological and genetic studies in H. erinaceus.


Asunto(s)
Genoma Fúngico , Hericium/genética , Metabolismo de los Hidratos de Carbono/genética , Genes del Tipo Sexual de los Hongos , Hericium/enzimología , Repeticiones de Microsatélite , Factores de Transcripción/genética , Secuenciación Completa del Genoma
3.
Genomics ; 110(3): 201-209, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28970048

RESUMEN

Blue light is an important environmental factor which could induce mushroom primordium differentiation and fruiting body development. However, the mechanisms of Pleurotus eryngii primordium differentiation and development induced by blue light are still unclear. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of renewable lignocelluloses to provide carbohydrates for fungal growth, development and reproduction. In the present research, the expression profiles of genes were measured by comparison between the Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation and dark using high-throughput sequencing approach. After assembly and compared to the Pleurotus eryngii reference genome, 11,343 unigenes were identified. 539 differentially expressed genes including white collar 2 type of transcription factor gene, A mating type protein gene, MAP kinase gene, oxidative phosphorylation associated genes, CAZymes genes and other metabolism related genes were identified during primordium differentiated into fruiting body stage after blue light stimulation. KEGG results showed that carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of amino acids pathways were affected during blue light inducing primordia formation. Most importantly, 319 differentially expressed CAZymes participated in carbon metabolism were identified. The expression patterns of six representative CAZymes and laccase genes were further confirmed by qRT-PCR. Enzyme activity results indicated that the activities of CAZymes and laccase were affected in primordium differentiated into fruiting body under blue light stimulation. In conclusion, the comprehensive transcriptome and CAZymes of Pleurotus eryngii at primordium differentiated into fruiting body stage after blue light stimulation were obtained. The biological insights gained from this integrative system represent a valuable resource for future genomic studies on this commercially important mushroom.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Lignina/metabolismo , Pleurotus/enzimología , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Luz , Pleurotus/genética , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo
4.
Cell Physiol Biochem ; 39(4): 1479-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27607466

RESUMEN

BACKGROUND/AIMS: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. METHODS AND RESULTS: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. CONCLUSION: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation.


Asunto(s)
Celulasas/metabolismo , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Lignina/metabolismo , Pleurotus/enzimología , Biomasa , Celulasas/genética , Celulasas/aislamiento & purificación , Productos Agrícolas , Pruebas de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/aislamiento & purificación , Hidrólisis , Lignina/química , Anotación de Secuencia Molecular , Pleurotus/genética , Proteómica/métodos , Especificidad por Sustrato , Residuos
5.
Appl Microbiol Biotechnol ; 100(12): 5437-52, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26875873

RESUMEN

To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.


Asunto(s)
Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/fisiología , Sitios de Carácter Cuantitativo , Hongos Shiitake/genética , Hongos Shiitake/fisiología , Ligamiento Genético , Marcadores Genéticos , Fenotipo
6.
Foods ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38890878

RESUMEN

Hericium erinaceus has long been favored for its remarkable nutritional and health-promoting benefits, and erinacine A is the key component responsible for the neuroprotective properties of H. erinaceus. Establishing an efficient method for separating erinacine A from H. erinaceus and screening the erinacine A-enriched strains is crucial to maximizing its benefits. Herein, we first reported that high-speed counter current chromatography (HSCCC) is an effective method for separating high-purity erinacine A. Using a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/water (4.5:5:4.5:5, v/v/v/v), erinacine A with a purity of over 95% was separated. Then, we evaluated the content and yield of erinacine A in the liquid-fermented mycelia of Hericium germplasms. Both the content and yield of erinacine A varied greatly among the surveyed strains. The significant effect of the strain on the erinacine A content and yield was revealed by an analysis of variance. The highest erinacine A content and yield were observed in the mycelia of a wild strain HeG, reaching 42.16 mg/g and 358.78 mg/L, which is superior to the current highest outcomes achieved using submerged cultivation. The isolation method established and the strains screened in this study can be beneficial for the scaling up of erinacine A extraction and nutraceutical development to industrial levels.

7.
Adv Mater ; 36(25): e2400089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498771

RESUMEN

Organic field-effect transistors (OFETs) have broad prospects in biomedical, sensor, and aerospace applications. However, obtaining temperature-immune OFETs is difficult because the electrical properties of organic semiconductors (OSCs) are temperature-sensitive. The zero-temperature coefficient (ZTC) point behavior can be used to achieve a temperature-immune output current; however, it is difficult to achieve in organic devices with thermal activation characteristics, according to the existing ZTC point theory. Here, the Fermi pinning in OSCs is eliminated using the defect passivation strategy, making the Fermi level closer to the tail state at low temperatures; thus threshold voltage (VT) is negatively correlated with temperature. ZTC point behaviors in OFETs are achieved by compensation between VT and mobility at different temperatures to improve its temperature immunity. A temperature-immune output current can be realized in a variable-temperature bias voltage test over 50000 s by biasing the device at the ZTC point. This study provides an effective solution for temperature-immune OFETs and inspiration for their practical application.

8.
Bioresour Technol ; 369: 128389, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435419

RESUMEN

In order to sustainable process of bio-succinic acid (SA), response surface methodology (RSM) was applied to optimize liquid hot water pretreatment pretreatment of sugarcane bagasse (SCB), followed by high-solids enzymatic hydrolysis of pretreated residual that without washing, then the hydrolysates and partial pretreatment liquid were used as carbon sources for SA fermentation. Results showed that the highest sugars yield could be achieved at pretreatment conditions of temperature 186 °C, time 25 min and solid-to-liquid ratio 0.08; enzymatic digestion the pretreated residuals at 20 % (w/v) solid content via enzymes reconstruction and fed-batch strategy, the obtained sugars reached to 121 g/L; by controlling the nutrition and conditions of the fermentation process, most of the C5 and C6 sugars in the hydrolysate and pretreatment liquid were converted into SA with a conversion rate high to 280 mg/g SCB. This study can provide a novel clue for clean and efficient biorefining of chemicals.


Asunto(s)
Celulosa , Saccharum , Celulosa/metabolismo , Fermentación , Ácido Succínico , Saccharum/metabolismo , Hidrólisis , Agua , Azúcares
9.
Front Microbiol ; 13: 997940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466645

RESUMEN

Oxidative stress is caused by an imbalance between prooxidants and antioxidants, which is the cause of various chronic human diseases. Lactic acid bacteria (LAB) have been considered as an effective antioxidant to alleviate oxidative stress in the host. To obtain bacterium resources with good antioxidant properties, in the present study, 113 LAB strains were isolated from 24 spontaneously fermented chili samples and screened by tolerance to hydrogen peroxide (H2O2). Among them, Lactobacillus plantarum GXL94 showed the best antioxidant characteristics and the in vitro antioxidant activities of this strain was evaluated extensively. The results showed that L. plantarum GXL94 can tolerate hydrogen peroxide up to 22 mM, and it could normally grow in MRS with 5 mM H2O2. Its fermentate (fermented supernatant, intact cell and cell-free extract) also had strong reducing capacities and various free radical scavenging capacities. Meanwhile, eight antioxidant-related genes were found to up-regulate with varying degrees under H2O2 challenge. Furthermore, we evaluated the probiotic properties by using in vitro assessment. It was showed that GXL94 could maintain a high survival rate at pH 2.5% or 2% bile salt or 8.0% NaCl, live through simulated gastrointestinal tract (GIT) to colonizing the GIT of host, and also show higher abilities of auto-aggregation and hydrophobicity. Additionally, the usual antibiotic susceptible profile and non-hemolytic activity indicated the safety of the strain. In conclusion, this study demonstrated that L. plantarum GXL94 could be a potential probiotic candidate for producing functional foods with antioxidant properties.

10.
AMB Express ; 12(1): 119, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114307

RESUMEN

The high cost of cellulase is one of the main obstacles hindering the large-scale biorefining of lignocellulosic biomass. Therefore, developing efficient method for preparation of cellulase is promising. In the present study, the production of cellulase by Trichoderma reesei, Trichoderma harzianum, and Aspergillus niger was optimized, and the synergistic effect of these cellulase on enzymatic hydrolysis of pretreated ramie stalks was also evaluated. The maximum CMCase (Carboxymethyl Cellulase) and filter paper activity (FPA) produced by T. reesei reached to 3.12 IU/mL and 0.13 IU/mL, respectively. The maximum activities of CMCase (3.68 IU/mL), FPA (0.04 IU/mL) and ß-glucosidase (8.44 IU/mL) were obtained from A. niger. The results also showed that under the premise of the same FPA activity, the contribution of ß-glucosidase activity to yield of reducing sugar was greater than that of CMCase. Besides, cellulase produced by T. reesei and A. niger had the best synergistic effect on enzymatic hydrolysis of pretreated ramie stalks. The highest reducing sugars yield (417 mg/g dry substrate) was achieved when enzyme cocktail was prepared at the ratio of 1:1, which was 1.36-3.35 folds higher than that of different single enzymes. The present research has provided a novel method for efficient preparation of enzymes consortium for enzymatic hydrolysis of ramie stalks.

11.
J Fungi (Basel) ; 7(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34947058

RESUMEN

Meiotic crossover plays a critical role in generating genetic variations and is a central component of breeding. However, our understanding of crossover in mushroom-forming fungi is limited. Here, in Lentinula edodes, we characterized the chromosome-wide intragenic crossovers, by utilizing the single-nucleotide polymorphisms (SNPs) datasets of an F1 haploid progeny. A total of 884 intragenic crossovers were identified in 110 single-spore isolates, the majority of which were closer to transcript start sites. About 71.5% of the intragenic crossovers were clustered into 65 crossover hotspots. A 10 bp motif (GCTCTCGAAA) was significantly enriched in the hotspot regions. Crossover frequencies around mating-type A (MAT-A) loci were enhanced and formed a hotspot in L. edodes. Genome-wide quantitative trait loci (QTLs) mapping identified sixteen crossover-QTLs, contributing 8.5-29.1% of variations. Most of the detected crossover-QTLs were co-located with crossover hotspots. Both cis- and trans-QTLs contributed to the nonuniformity of crossover along chromosomes. On chr2, we identified a QTL hotspot that regulated local, global crossover variation and crossover hotspot in L. edodes. These findings and observations provide a comprehensive view of the crossover landscape in L. edodes, and advance our understandings of conservation and diversity of meiotic recombination in mushroom-forming fungi.

12.
Microbiol Res ; 245: 126692, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33453565

RESUMEN

Meiotic crossover shows marked interspecific and intraspecific variation, and knowledge about the molecular mechanism of crossover variation remains limited. Herein, we described the genome-wide scanning of crossover in one mushroom-forming fungus Hericium erinaceus. Utilizing the whole-genome single-nucleotide polymorphism (SNP) data-sets of a 127 F1 haploid progeny, we localized a total of 1316 crossover events and found that they were more likely to occur in the genic than intergenic regions. More than 30 % of the crossovers were concentrated in 59 crossover hotspots that were preferentially located close to chromosome ends. We then examined the genomic features around crossover hotspots. Results showed that the crossover hotspots were associated with increased gene density and guanine-cytosine (GC) content. An 8-bp GC-rich motif (GCGTCAGC) was found to be significantly enriched in these hotspots. The presence of mating-type loci affected the crossover at local scale rather than the overall crossover number. In order to dissect the genetic mechanisms shaping crossover variation, we then conducted quantitative trait locus (QTL) mapping for the total crossovers (TCO) and the crossover events that solely occurred within hotspots (HCO). Genome-wide QTL scanning identified four TCO-QTLs and two HCO-QTLs, which all located within or next to the crossover-hotspots. Crossover variations were shaped by multiple small-effect loci, with individual QTL contributing 6.9 %-11.7 % of variation. A few recombination pathway genes, including Spo11, Msh5, and Smc5 were found to be co-localized with the mapped crossover QTLs. Taken together, findings of this study offer insights into the crossover distribution and genetic factors conferring crossover variation in H. erinaceus, and advance our understandings for meiotic recombination in mushroom-forming fungi.


Asunto(s)
Mapeo Cromosómico , Genoma Fúngico , Hericium/genética , Recombinación Homóloga , Meiosis/genética , Genómica , Genotipo , Polimorfismo de Nucleótido Simple
13.
Comput Struct Biotechnol J ; 19: 1641-1653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868600

RESUMEN

Fruiting body development (FBD) of mushroom-forming fungi has attracted tremendous interest. However, the genetic and molecular basis of FBD is poorly known. Here, using Lentinula edodes (shiitake) as a model, we deciphered the genetic architecture underlying fruiting body-related traits (FBRTs) by combined genomic, genetic and phenotypic data. Using RNA-Seq of fruiting bodies from 110 dikaryons in a bi-parental mapping population, we constructed an ultra-high-density genetic map of L. edodes (Lemap2.0) with a total length of 810.14 cM, which covered 81.7% of the shiitake genome. A total of 94 scaffolds of the shiitake genome were aligned to Lemap2.0 and re-anchored into nine pseudo-chromosomes. Then via quantitative trait locus (QTL) analysis, we disclosed an outline of the genetic architecture of FBD in shiitake. Twenty-nine QTLs and three main genomic regions associated with FBD of shiitake were identified. Using meta-QTL analysis, seven pleiotropic QTLs for multiple traits were detected, which contributed to the correlations of FBRTs. In the mapped QTLs, the expression of 246 genes were found to significantly correlate with the phenotypic traits. Thirty-three of them were involved in FBD and could represent candidate genes controlling the shape and size of fruiting bodies. Collectively, our findings have advanced our understanding of the genetic regulation of FBD in shiitake and mushroom-forming fungi at large.

14.
Bioresour Technol ; 339: 125578, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34298250

RESUMEN

The full utilization of carbohydrates in lignocellulosic biomass is essential for an efficient biorefining process. In this study, co-fermentation was performed for processing ethanol and succinic from sugarcane bagasse. By optimizing the co-fermentation conditions, nutrition and feeding strategies, a novel process was developed to make full utilization of the glucose and xylose in the hydrolysate of sugarcane bagasse. The achieved concentrations of succinic acid and ethanol reached to 22.1 and 22.0 g/L, respectively, and could realize the conversion of 100 g SCB raw material into 8.6 g ethanol and 8.7 g succinic acid. It is worth mentioning that the CO2 released from S. cerevisiae in co-fermentation system was recycled by A. succinogenes to synthesize succinic acid, realized CO2 emission reduction in the process of lignocellulosic biomass biorefinery. This study provided a clue for efficient biorefinery of lignocellulosic biomass and reduction greenhouse gas emissions.


Asunto(s)
Saccharum , Dióxido de Carbono , Celulosa , Etanol , Fermentación , Glucosa , Pentosas , Saccharomyces cerevisiae , Ácido Succínico , Xilosa
15.
J Phys Chem Lett ; 12(45): 11114-11121, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34752103

RESUMEN

The MnO2-based aqueous Zn cell can meet the requirements of safety, flexibility, and low cost for portable/wearable electronics; however, its low intrinsic conductivity, weak kinetics, and poor high-loading capacity restrict its practical performance. In this study, the synergistic architecture of MoS2-loaded, oxygen-defect-rich MnO2-x nanocrystals with a carbon coating (M-PM2-x-H2 aerogel) was prepared. As corevealed by various characterizations, this synergistic design not only improves the electronic/ionic conductivity but also motivates the conversion kinetics of the surficial electrochemical reaction. As a result, the M-PM2-x-H2 cathode delivers a much improved capacity of 567 mA h·g-1 at 0.1 A·g-1 and shows a high capacity retention of 176% after 150 cycles at 0.5 A·g-1. More impressively, the high areal loading (3.97 mg·cm-1) of the M-PM2-x-H2 electrode also displays a high capacity of 367 mA h·g-1 at 0.1 A·g-1. In addition, the derived all-solid-state cell exhibits excellent flexibility and safety under the conditions of weight loading, cutting, and bending.

16.
Microb Biotechnol ; 14(3): 911-922, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32798284

RESUMEN

In the present research, Phanerochaete chrysosporium and Irpex Lacteus simultaneously degraded lignin and cellulose in ramie stalks, whereas Pleurotus ostreatus and Pleurotus eryngii could depolymerize lignin but little cellulose. Comparative proteomic analysis of these four white-rot fungi was used to investigate the molecular mechanism of this selective ligninolysis. 292 proteins, including CAZymes, sugar transporters, cytochrome P450, proteases, phosphatases and proteins with other function, were successfully identified. A total of 58 CAZyme proteins were differentially expressed, and at the same time, oxidoreductases participated in lignin degradation were expressed at higher levels in P. eryngii and P. ostreatus. Enzyme activity results indicated that cellulase activities were higher in P. chrysosporium and I. lacteus, while the activities of lignin-degrading enzymes were higher in P. eryngii and P. ostreatus. In addition to the lignocellulosic degrading enzymes, several proteins including sugar transporters, cytochrome P450 monooxygenases, peptidases, proteinases, phosphatases and kinases were also found to be differentially expressed among these four species of white-rot fungi. In summary, the protein expression patterns of P. eryngii and P. ostreatus exhibit co-upregulated oxidoreductase potential and co-downregulated cellulolytic capability relative to those of P. chrysosporium and I. lacteus, providing a mechanism consistent with selective ligninolysis by P. eryngii and P. ostreatus.


Asunto(s)
Boehmeria , Lignina , Pleurotus , Polyporales , Proteómica
17.
Front Microbiol ; 12: 800470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154031

RESUMEN

Emerging evidence indicates that probiotics have been proved to influence liver injury and regeneration. In the present study, the effects of Lactiplantibacillus plantarum AR113 on the liver regeneration were investigated in 70% partial hepatectomy (PHx) rats. Sprague-Dawley (SD) rats were gavaged with L. plantarum AR113 suspensions (1 × 1010 CFU/mL) both before and after partial hepatectomy. The results showed that L. plantarum AR113 administration 2 weeks before partial hepatectomy can accelerate liver regeneration by increased hepatocyte proliferation and tumor necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), and transforming growth factor-ß (TGF-ß) expression. Probiotic administration enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. plantarum AR113 showed decline of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidyl serine (PS), and lysophosphatidyl choline (LysoPC) levels in the serum of the rats after the L. plantarum AR113 administration. Moreover, L. plantarum AR113 treated rats exhibited higher concentrations of L-leucine, L-isoleucine, mevalonic acid, and lower 7-oxo-8-amino-nonanoic acid in plasma than that in PHx. Spearman correlation analysis revealed a significant correlation between changes in gut microbiota composition and glycerophospholipid. These results indicate that L. plantarum AR113 is promising for accelerating liver regeneration and provide new insights regarding the correlations among the microbiome, the metabolome, and liver regeneration.

18.
J Basic Microbiol ; 50(5): 475-83, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20806249

RESUMEN

The target region amplification polymorphism (TRAP) technique was utilized for assessing the genetic diversity of 55 wild strains and one cultivated strain of Lentinula edodes in China. From these strains, 932 DNA fragments were amplified using 12 primer combinations, 929 fragments (99.68%) of which were polymorphic between two or more strains. The average coefficient of pairwise genetic similarity was 0.696, within a range from 0.503 to 0.947. Cluster analysis and principal coordinate analysis separated the tested strains of L. edodes into two major groups. Group A was further divided into seven subgroups. In most cases, the strains from the same or adjoining regions could be preferentially clustered into small groups. The results from the average genetic similarity and the weighted average value of Shannon's Information Index among the tested strains of L. edodes from the same region revealed a vast genetic diversity in the natural germplasm found in China. Compared with the L. edodes strains from other regions, those found on the Yunnan Plateau, in the Hengduanshan Mountains, in Taiwan, South China, and Northeast China showed greater genetic diversity. The results of the present study indicated that the wild strains of L. edodes in China possessed abundant genetic variation, and the genetic relationships among them were highly associated with the geographic distribution. This is the first report demonstrating that TRAP markers were powerful for analyzing the genetic diversity of L. edodes, and the study lays the foundation for a further application of this remarkable technique to other fungi.


Asunto(s)
Variación Genética , Análisis de Secuencia de ADN/métodos , Hongos Shiitake/genética , China , Análisis por Conglomerados , ADN de Hongos/genética , Marcadores Genéticos , Análisis de Componente Principal , Hongos Shiitake/clasificación
19.
Int J Med Mushrooms ; 22(7): 627-639, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865920

RESUMEN

Ganoderma lucidum is one of the most famous mushrooms in traditional Chinese medicine. At present, the fully utilized parts of G. lucidum are mainly fruiting body and spore powder. The wild and artificially cultivated G. lucidum fruiting body is costly and rare. Therefore, how to improve the utilization of G. lucidum by means of fermentation is worth investigating. The present study was to perform submerged fermentation of G. lucidum and compare the bioactivities of G. lucidum submerged fermentation broth and fruiting body extract. After the extraction and submerged fermentation methods were optimized, the optimum conditions for extraction were determined as ethanol extraction at 80°C with a solid-to-liquid ratio of 1:30, and those for submerged fermentation were cultivation on malt extract medium for 6 days at 30°C. Under the optimum conditions, the antioxidative activity and tyrosinase inhibition rate of the fermentation broth were 1.2-4.1 fold higher than those of the ethanol extract. Cytotoxicity analysis showed that the ethanol and water extracts and the fermentation broth effectively inhibited pancreatic cancer cells and prostate cancer cells, with much smaller effect on nontumor human embryonic kidney (HEK293T). These results demonstrate that the submerged fermentation could improve the utilization value of G. lucidum and the fermentation broth can be used as an antioxidant additive applied in food, drugs, and cosmetics.


Asunto(s)
Antioxidantes/metabolismo , Reishi/metabolismo , Animales , Línea Celular Tumoral , Medios de Cultivo/metabolismo , Medios de Cultivo/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/metabolismo , Fermentación , Células HEK293 , Humanos , Ratones , Monofenol Monooxigenasa/antagonistas & inhibidores , Ratas , Reishi/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-30500452

RESUMEN

Vascular endothelial cell damage is related to many vascular diseases, including cardiovascular disease (CVD). Reactive oxygen species (ROS) play a vital role in the pathogenesis of many cardiovascular diseases. Herein, H2O2-induced human umbilical vein endothelial cell (HUVEC) injury model was used to explore the mechanisms involved in the pathogenesis of ROS-induced oxidative stress and cell dysfunction. Gamma-aminobutyric acid (GABA), a naturally occurring four-carbon non-protein amino acid, has antioxidant activity and anti-inflammatory action. In the present study, we demonstrated that GABA could scavenge free radicals including DPPH and ABTS, reverse H2O2-induced suppression on HUVEC proliferation, HUVEC apoptosis and ROS formation via p65 signaling. Interestingly, GABA treatment alone did not cause significant changes in p65 phosphorylation, suggesting that GABA will not cause imbalance in NF-κB signaling and ROS formation without oxidative stress. Moreover, GABA also modulated Keap1-Nrf2 and Notch signaling pathways upon H2O2 stimulation, suggesting that GABA may exert its effect via multi mechanisms. In conclusion, the present study demonstrated that GABA inhibits H2O2-induced oxidative stress in HUVECs via inhibiting ROS-induced NF-κB and Caspase 3 pathway activation. GABA may, therefore, have potential as a pharmacological agent in the prevention or treatment of oxidative injury-related cardiovascular disease.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Depuradores de Radicales Libres , Células Endoteliales de la Vena Umbilical Humana , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA