Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ind Microbiol Biotechnol ; 42(9): 1233-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26173497

RESUMEN

The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1's regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Sordariales/enzimología , Transactivadores/biosíntesis , Xilosidasas/biosíntesis , Inducción Enzimática , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Sordariales/genética , Transactivadores/genética , Xilosidasas/genética
2.
Pharmacol Res ; 84: 32-44, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24788079

RESUMEN

Endogenously produced hydrogen sulfide (H2S) may have multiple functions in the brain including potent anti-inflammatory effects. Activated microglia can secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to hypoxic injuries in the developing brain. The aim of this study is to investigate the potential role of H2S in altering hypoxia-induced neurotoxicity via its anti-inflammatory actions as examined in vitro and in vivo models. Using the BV-2 microglial cell line, we found that sodium hydrosulfide (NaHS), a H2S donor, significantly inhibited hypoxia-induced microglial activation and suppressed subsequent pro-inflammatory factor release. In addition, treating murine primary cortical neurons with conditioned medium (CM) from hypoxia-stimulated microglia induced neuronal apoptosis, an effect that was reversed by CM treated with NaHS. Further, NaHS inhibited phosphorylation of the p65 subunit of NF-κB, phosphorylation of ERK and p38 but not JNK MAPK in these hypoxia-induced microglia. When administered in vivo to neonatal mice subjected to hypoxia, NaHS was found to attenuate neuron death, an effect that was associated with suppressed microglial activation, pro-inflammatory cytokines and NO levels. Taken together, H2S exerts neuroprotection against hypoxia-induced neurotoxicity through its anti-inflammatory effect in microglia. This effect appears to be attributable to inhibition of iNOS, NF-κB, ERK and p38 MAPK signaling pathways. Our results suggest a potential therapeutic application of H2S releasing drugs in hypoxic brain damage treatment.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Hipoxia/prevención & control , Microglía/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Hipoxia/metabolismo , Interleucina-6/metabolismo , Activación de Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670767

RESUMEN

In this work, we performed a systematic study of the physical properties of amorphous Indium-Gallium-Zinc Oxide (a-IGZO) films prepared under various deposition pressures, O2/(Ar+O2) flow ratios, and annealing temperatures. X-ray reflectivity (XRR) and microwave photoconductivity decay (µ-PCD) measurements were conducted to evaluate the quality of a-IGZO films. The results showed that the process conditions have a substantial impact on the film densities and defect states, which in turn affect the performance of the final thin-film transistors (TFT) device. By optimizing the IGZO film deposition conditions, high-performance TFT was able to be demonstrated, with a saturation mobility of 8.4 cm2/Vs, a threshold voltage of 0.9 V, and a subthreshold swing of 0.16 V/dec.

4.
3 Biotech ; 8(3): 160, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29527447

RESUMEN

Myceliophthora thermophila (ATCC 42464) is a thermophilic fungus that produces cellulolytic enzymes with high thermal stability. Unlike its mesophile counterparts, study on gene expression regulation of cellulolytic enzymes in M. thermophila is inadequate. This work identified the function of MHR1, a putative transcription regulator of cellulolytic enzymes in M. thermophila that was found through RNA-Seq based gene expression profile analysis. RNA interference was used to study the role of MHR1. A recombinant plasmid, pUC19-Ppdc-mhr1-Tpdc, which contained the RNAi sequence for mhr1 was constructed and transformed into M. thermophila. One of the transformants, MtR5, in which the RNA interference efficiency was the highest, was used for the following studies. In the mhr1-silenced strain MtR5, the filter paper hydrolyzing activity was 1.33-fold; ß-1, 4-endoglucanase activity was 1.65-fold; and xylanase activity was 1.48-fold higher than those of the parental strain after induction, respectively, by wheat straw powder. qRT-PCR showed that gene expression of cbh1, cbh2, egl3 and xyr1 were 9.56-, 37.36-, 56.14- and 28.30-fold higher in MtR5 than in wild type, respectively. Our findings suggest that the transcription factor MHR1 of M. thermophila can repress cellulase and xylanase activities. Silenced mhr1 results in increased expression not only of the main cellulase genes, but also of the positive regulatory gene xyr1. This work is relevant to the development of M. thermophila as an industrial production host for cellulolytic and hemicellulolytic enzymes, which could be used to degrade a wide range of different biomass, converting lignocellulosic feedstock into sugar precursors for biofuels.

5.
J Microbiol Biotechnol ; 25(7): 1101-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25824435

RESUMEN

The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and ß-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of ß-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.


Asunto(s)
Celulasa/biosíntesis , Proteínas Fúngicas/metabolismo , Interferencia de ARN , Sordariales/metabolismo , Celulasa/genética , Medios de Cultivo/química , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Reacción en Cadena en Tiempo Real de la Polimerasa , Sordariales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA