Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 149(6): 4366, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34241465

RESUMEN

An approach of broadband mode separation in shallow water is proposed using phase speed extracted from one hydrophone and solved with sparse Bayesian learning (SBL). The approximate modal dispersion relation, connecting the horizontal wavenumbers (phase velocities) for multiple frequencies, is used to build the dictionary matrix for SBL. Given a multi-frequency pressure vector on one hydrophone, SBL estimates a set of sparse coefficients for a large number of atoms in the dictionary. With the estimated coefficients and corresponding atoms, the separated normal modes are retrieved. The presented method can be used for impulsive or known-form signals in a shallow-water environment while no bottom information is required. The simulation results demonstrate that the proposed approach is adapted to the environment where both the reflected and refracted modes coexist, whereas the performance of the time warping transformation degrades significantly in this scenario.

2.
J Acoust Soc Am ; 147(6): 3729, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32611184

RESUMEN

The horizontal wavenumbers and modal depth functions are estimated by block sparse Bayesian learning (BSBL) for broadband signals received by a vertical line array in shallow-water waveguides. The dictionary matrix consists of multi-frequency modal depth functions derived from shooting methods given a large set of hypothetical horizontal wavenumbers. The dispersion relation for multi-frequency horizontal wavenumbers is also taken into account to generate the dictionary. In this dictionary, only a few of the entries are used to describe the pressure field. These entries represent the modal depth functions and associated wavenumbers. With the constraint of block sparsity, the BSBL approach is shown to retrieve the horizontal wavenumbers and corresponding modal depth functions with high precision, while a priori knowledge of sea bottom, moving source, and source locations is not needed. The performance is demonstrated by simulations and experimental data.

3.
J Acoust Soc Am ; 146(1): 211, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31370608

RESUMEN

A deep learning approach based on big data is proposed to locate broadband acoustic sources using a single hydrophone in ocean waveguides with uncertain bottom parameters. Several 50-layer residual neural networks, trained on a huge number of sound field replicas generated by an acoustic propagation model, are used to handle the bottom uncertainty in source localization. A two-step training strategy is presented to improve the training of the deep models. First, the range is discretized in a coarse (5 km) grid. Subsequently, the source range within the selected interval and source depth are discretized on a finer (0.1 km and 2 m) grid. The deep learning methods were demonstrated for simulated magnitude-only multi-frequency data in uncertain environments. Experimental data from the China Yellow Sea also validated the approach.

4.
Sensors (Basel) ; 19(21)2019 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684045

RESUMEN

Deep neural networks (DNNs) have been shown to be effective for single sound source localization in shallow water environments. However, multiple source localization is a more challenging task because of the interactions among multiple acoustic signals. This paper proposes a framework for multiple source localization on underwater horizontal arrays using deep neural networks. The two-stage DNNs are adopted to determine both the directions and ranges of multiple sources successively. A feed-forward neural network is trained for direction finding, while the long short term memory recurrent neural network is used for source ranging. Particularly, in the source ranging stage, we perform subarray beamforming to extract features of sources that are detected by the direction finding stage, because subarray beamforming can enhance the mixed signal to the desired direction while preserving the horizontal-longitudinal correlations of the acoustic field. In this way, a universal model trained in the single-source scenario can be applied to multi-source scenarios with arbitrary numbers of sources. Both simulations and experiments in a range-independent shallow water environment of SWellEx-96 Event S5 are given to demonstrate the effectiveness of the proposed method.

5.
J Acoust Soc Am ; 143(5): 2922, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29857712

RESUMEN

Deep neural networks (DNNs) are advantageous for representing complex nonlinear relationships. This paper applies DNNs to source localization in a shallow water environment. Two methods are proposed to estimate the range and depth of a broadband source through different neural network architectures. The first adopts the classical two-stage scheme, in which feature extraction and DNN analysis are independent steps. The eigenvectors associated with the modal signal space are extracted as the input feature. Then, the time delay neural network is exploited to model the long term feature representation and constructs the regression model. The second concerns a convolutional neural network-feed-forward neural network (CNN-FNN) architecture, which trains the network directly by taking the raw multi-channel waveforms as input. The CNNs are expected to perform spatial filtering for multi-channel signals, in an operation analogous to time domain filters. The outputs of CNNs are summed as the input to FNN. Several experiments are conducted on the simulated and experimental data to evaluate the performance of the proposed methods. The results demonstrate that DNNs are effective for source localization in complex and varied water environments, especially when there is little precise environmental information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA