Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768850

RESUMEN

The selection of plant genotypes with improved productivity and tolerance to environmental constraints has always been a major concern in plant breeding. Classical approaches based on the generation of variability and selection of better phenotypes from large variant collections have improved their efficacy and processivity due to the implementation of molecular biology techniques, particularly genomics, Next Generation Sequencing and other omics such as proteomics and metabolomics. In this regard, the identification of interesting variants before they develop the phenotype trait of interest with molecular markers has advanced the breeding process of new varieties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein abundance has boosted the identification of potential new regulators of the traits of interest, using a relatively low number of variants. These important breakthrough technologies, built on top of classical approaches, will be improved in the future by including the spatial variable, allowing the identification of gene(s) involved in key processes at the tissue and cell levels.


Asunto(s)
Genómica , Fitomejoramiento , Proteómica , Plantas/genética , Genotipo
2.
Physiol Plant ; 174(1): e13547, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480798

RESUMEN

During the last years, a great effort has been dedicated at the development and employment of diverse approaches for achieving more stress-tolerant and climate-flexible crops and sustainable yield increases to meet the food and energy demands of the future. The ongoing climate change is in fact leading to more frequent extreme events with a negative impact on food production, such as increased temperatures, drought, and soil salinization as well as invasive arthropod pests and diseases. In this review, diverse "green strategies" (e.g., chemical priming, root-associated microorganisms), and advanced technologies (e.g., genome editing, high-throughput phenotyping) are described on the basis of the most recent research evidence. Particularly, attention has been focused on the potential use in a context of sustainable and climate-smart agriculture (the so called "next agriculture generation") to improve plant tolerance and resilience to abiotic and biotic stresses. In addition, the gap between the results obtained in controlled experiments and those from application of these technologies in real field conditions (lab to field step) is also discussed.


Asunto(s)
Productos Agrícolas , Estrés Fisiológico , Agricultura , Cambio Climático , Productos Agrícolas/genética , Sequías , Estrés Fisiológico/genética
4.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824010

RESUMEN

ABA is involved in plant responses to a broad range of pathogens and exhibits complex antagonistic and synergistic relationships with salicylic acid (SA) and ethylene (ET) signaling pathways, respectively. However, the specific receptor of ABA that triggers the positive and negative responses of ABA during immune responses remains unknown. Through a reverse genetic analysis, we identified that PYR1, a member of the family of PYR/PYL/RCAR ABA receptors, is transcriptionally upregulated and specifically perceives ABA during biotic stress, initiating downstream signaling mediated by ABA-activated SnRK2 protein kinases. This exerts a damping effect on SA-mediated signaling, required for resistance to biotrophic pathogens, and simultaneously a positive control over the resistance to necrotrophic pathogens controlled by ET. We demonstrated that PYR1-mediated signaling exerted control on a priori established hormonal cross-talk between SA and ET, thereby redirecting defense outputs. Defects in ABA/PYR1 signaling activated SA biosynthesis and sensitized plants for immune priming by poising SA-responsive genes for enhanced expression. As a trade-off effect, pyr1-mediated activation of the SA pathway blunted ET perception, which is pivotal for the activation of resistance towards fungal necrotrophs. The specific perception of ABA by PYR1 represented a regulatory node, modulating different outcomes in disease resistance.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Transporte de Membrana/metabolismo , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Resistencia a la Enfermedad , Etilenos/metabolismo , Hongos/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo
5.
Plant Cell ; 28(9): 2291-2311, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27495812

RESUMEN

Recently, we described the ubiquitylation of PYL4 and PYR1 by the RING E3 ubiquitin ligase RSL1 at the plasma membrane of Arabidopsis thaliana This suggested that ubiquitylated abscisic acid (ABA) receptors might be targeted to the vacuolar degradation pathway because such ubiquitylation is usually an internalization signal for the endocytic route. Here, we show that FYVE1 (previously termed FREE1), a recently described component of the endosomal sorting complex required for transport (ESCRT) machinery, interacted with RSL1-receptor complexes and recruited PYL4 to endosomal compartments. Although the ESCRT pathway has been assumed to be reserved for integral membrane proteins, we show the involvement of this pathway in the degradation of ABA receptors, which can be associated with membranes but are not integral membrane proteins. Knockdown fyve1 alleles are hypersensitive to ABA, illustrating the biological relevance of the ESCRT pathway for the modulation of ABA signaling. In addition, fyve1 mutants are impaired in the targeting of ABA receptors for vacuolar degradation, leading to increased accumulation of PYL4 and an enhanced response to ABA Pharmacological and genetic approaches revealed a dynamic turnover of ABA receptors from the plasma membrane to the endosomal/vacuolar degradation pathway, which was mediated by FYVE1 and was dependent on RSL1. This process involves clathrin-mediated endocytosis and trafficking of PYL4 through the ESCRT pathway, which helps to regulate the turnover of ABA receptors and attenuate ABA signaling.

6.
Nature ; 504(7478): 148-52, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24213631

RESUMEN

Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondary metabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Here we show that, in the legume Medicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD) quality control system to manage the production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membrane-anchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulation is prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Células Cultivadas , Degradación Asociada con el Retículo Endoplásmico , Perfilación de la Expresión Génica , Silenciador del Gen , Prueba de Complementación Genética , Medicago truncatula/enzimología , Medicago truncatula/ultraestructura , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saponinas/biosíntesis , Saponinas/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(3): E396-405, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26719420

RESUMEN

Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Multimerización de Proteína , Transducción de Señal , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/química , Sitios de Unión , Calorimetría , Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Modelos Biológicos , Fenotipo , Fosfolípidos/química , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Soluciones , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
8.
Plant Mol Biol ; 93(6): 623-640, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28160166

RESUMEN

Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA ß-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.


Asunto(s)
Ácido Abscísico/metabolismo , Citrus sinensis/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Poncirus/metabolismo , Ácido Abscísico/genética , Citrus sinensis/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Sequías , Inundaciones , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Poncirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico
9.
Plant Cell ; 26(12): 4802-20, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25465408

RESUMEN

Membrane-delimited abscisic acid (ABA) signal transduction plays a critical role in early ABA signaling, but the molecular mechanisms linking core signaling components to the plasma membrane are unclear. We show that transient calcium-dependent interactions of PYR/PYL ABA receptors with membranes are mediated through a 10-member family of C2-domain ABA-related (CAR) proteins in Arabidopsis thaliana. Specifically, we found that PYL4 interacted in an ABA-independent manner with CAR1 in both the plasma membrane and nucleus of plant cells. CAR1 belongs to a plant-specific gene family encoding CAR1 to CAR10 proteins, and bimolecular fluorescence complementation and coimmunoprecipitation assays showed that PYL4-CAR1 as well as other PYR/PYL-CAR pairs interacted in plant cells. The crystal structure of CAR4 was solved, which revealed that, in addition to a classical calcium-dependent lipid binding C2 domain, a specific CAR signature is likely responsible for the interaction with PYR/PYL receptors and their recruitment to phospholipid vesicles. This interaction is relevant for PYR/PYL function and ABA signaling, since different car triple mutants affected in CAR1, CAR4, CAR5, and CAR9 genes showed reduced sensitivity to ABA in seedling establishment and root growth assays. In summary, we identified PYR/PYL-interacting partners that mediate a transient Ca(2+)-dependent interaction with phospholipid vesicles, which affects PYR/PYL subcellular localization and positively regulates ABA signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Receptores de Superficie Celular/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Moleculares , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal
10.
Plant Cell ; 25(10): 3871-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24179127

RESUMEN

Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estrés Fisiológico
11.
Plant J ; 80(6): 1057-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25330042

RESUMEN

Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Semivida , Proteínas de Transporte de Membrana/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
EMBO J ; 30(20): 4171-84, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21847091

RESUMEN

Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/PYR1-like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading to the activation of ABA signalling. The PYR/PYL/RCAR family contains 14 genes in Arabidopsis and is currently the largest plant hormone receptor family known; however, it is unclear what functional differentiation exists among receptors. Here, we identify two distinct classes of receptors, dimeric and monomeric, with different intrinsic affinities for ABA and whose differential properties are determined by the oligomeric state of their apo forms. Moreover, we find a residue in PYR1, H60, that is variable between family members and plays a key role in determining oligomeric state. In silico modelling of the ABA activation pathway reveals that monomeric receptors have a competitive advantage for binding to ABA and PP2Cs. This work illustrates how receptor oligomerization can modulate hormonal responses and more generally, the sensitivity of a ligand-dependent signalling system.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Proteína Fosfatasa 2C , Receptores de Superficie Celular/metabolismo , Termodinámica
13.
New Phytol ; 205(3): 1076-1082, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25490966

RESUMEN

Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.


Asunto(s)
Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Germinación/genética , Fosfoproteínas Fosfatasas/genética , Latencia en las Plantas/genética , Sitios de Carácter Cuantitativo , Adaptación Fisiológica , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2C , Semillas/crecimiento & desarrollo , Transducción de Señal
14.
J Exp Bot ; 66(3): 813-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25371509

RESUMEN

The stress hormone abscisic acid (ABA) induces expression of defence genes in many organs, modulates ion homeostasis and metabolism in guard cells, and inhibits germination and seedling growth. Concerning the latter effect, several mutants of Arabidopsis thaliana with improved capability for H(+) efflux (wat1-1D, overexpression of AKT1 and ost2-1D) are less sensitive to inhibition by ABA than the wild type. This suggested that ABA could inhibit H(+) efflux (H(+)-ATPase) and induce cytosolic acidification as a mechanism of growth inhibition. Measurements to test this hypothesis could not be done in germinating seeds and we used roots as the most convenient system. ABA inhibited the root plasma-membrane H(+)-ATPase measured in vitro (ATP hydrolysis by isolated vesicles) and in vivo (H(+) efflux from seedling roots). This inhibition involved the core ABA signalling elements: PYR/PYL/RCAR ABA receptors, ABA-inhibited protein phosphatases (HAB1), and ABA-activated protein kinases (SnRK2.2 and SnRK2.3). Electrophysiological measurements in root epidermal cells indicated that ABA, acting through the PYR/PYL/RCAR receptors, induced membrane hyperpolarization (due to K(+) efflux through the GORK channel) and cytosolic acidification. This acidification was not observed in the wat1-1D mutant. The mechanism of inhibition of the H(+)-ATPase by ABA and its effects on cytosolic pH and membrane potential in roots were different from those in guard cells. ABA did not affect the in vivo phosphorylation level of the known activating site (penultimate threonine) of H(+)-ATPase in roots, and SnRK2.2 phosphorylated in vitro the C-terminal regulatory domain of H(+)-ATPase while the guard-cell kinase SnRK2.6/OST1 did not.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , ATPasas de Translocación de Protón/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Cloruros/metabolismo , Citosol/metabolismo , Iones/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Potasio/metabolismo , ATPasas de Translocación de Protón/metabolismo
15.
Plant Cell ; 24(6): 2483-96, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22739828

RESUMEN

Abscisic acid (ABA) is a key hormone for plant growth, development, and stress adaptation. Perception of ABA through four types of receptors has been reported. We show here that impairment of ABA perception through the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) branch reduces vegetative growth and seed production and leads to a severe open stomata and ABA-insensitive phenotype, even though other branches for ABA perception remain functional. An Arabidopsis thaliana sextuple mutant impaired in six PYR/PYL receptors, namely PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8, was able to germinate and grow even on 100 µM ABA. Whole-rosette stomatal conductance (Gst) measurements revealed that leaf transpiration in the sextuple pyr/pyl mutant was higher than in the ABA-deficient aba3-1 or ABA-insensitive snrk2.6 mutants. The gradually increasing Gst values of plants lacking three, four, five, and six PYR/PYLs indicate quantitative regulation of stomatal aperture by this family of receptors. The sextuple mutant lacked ABA-mediated activation of SnRK2s, and ABA-responsive gene expression was dramatically impaired as was reported in snrk2.2/2.3/2.6. In summary, these results show that ABA perception by PYR/PYLs plays a major role in regulation of seed germination and establishment, basal ABA signaling required for vegetative and reproductive growth, stomatal aperture, and transcriptional response to the hormone.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/genética , Estomas de Plantas/fisiología , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fenotipo , Hojas de la Planta/fisiología , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Plant Physiol ; 162(3): 1652-68, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23703845

RESUMEN

Rapid stomatal closure induced by changes in the environment, such as elevation of CO2, reduction of air humidity, darkness, and pulses of the air pollutant ozone (O3), involves the SLOW ANION CHANNEL1 (SLAC1). SLAC1 is activated by OPEN STOMATA1 (OST1) and Ca(2+)-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of type 2 protein phosphatases (PP2C) by PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR) receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance and stomatal closure induced by environmental factors, we used a set of Arabidopsis (Arabidopsis thaliana) mutants defective in ABA metabolism/signaling. The stomatal conductance values varied severalfold among the studied mutants, indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity, and O3. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner, and there is a functional diversity among them. Although a rapid stomatal response to elevated CO2 was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was reduced in the dominant active PP2C mutants abi1-1 and abi2-1. Further experiments with a wider range of CO2 concentrations and analyses of stomatal response kinetics suggested that the ABA signalosome partially affects the CO2-induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness, and O3 and are involved in responses to elevated CO2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ozono/farmacología , Estomas de Plantas/fisiología , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Proteínas Portadoras/genética , Oscuridad , Humedad , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación , Ozono/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Estomas de Plantas/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C , Transducción de Señal
17.
Plant Physiol ; 163(1): 441-55, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864556

RESUMEN

Because abscisic acid (ABA) is recognized as the critical hormonal regulator of plant stress physiology, elucidating its signaling pathway has raised promise for application in agriculture, for instance through genetic engineering of ABA receptors. PYRABACTIN RESISTANCE1/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS ABA receptors interact with high affinity and inhibit clade A phosphatases type-2C (PP2Cs) in an ABA-dependent manner. We generated an allele library composed of 10,000 mutant clones of Arabidopsis (Arabidopsis thaliana) PYL4 and selected mutations that promoted ABA-independent interaction with PP2CA/ABA-HYPERSENSITIVE3. In vitro protein-protein interaction assays and size exclusion chromatography confirmed that PYL4(A194T) was able to form stable complexes with PP2CA in the absence of ABA, in contrast to PYL4. This interaction did not lead to significant inhibition of PP2CA in the absence of ABA; however, it improved ABA-dependent inhibition of PP2CA. As a result, 35S:PYL4(A194T) plants showed enhanced sensitivity to ABA-mediated inhibition of germination and seedling establishment compared with 35S:PYL4 plants. Additionally, at basal endogenous ABA levels, whole-rosette gas exchange measurements revealed reduced stomatal conductance and enhanced water use efficiency compared with nontransformed or 35S:PYL4 plants and partial up-regulation of two ABA-responsive genes. Finally, 35S:PYL4(A194T) plants showed enhanced drought and dehydration resistance compared with nontransformed or 35S:PYL4 plants. Thus, we describe a novel approach to enhance plant drought resistance through allele library generation and engineering of a PYL4 mutation that enhances interaction with PP2CA.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/farmacología , Proteínas de Arabidopsis/fisiología , Mutación , Fosfoproteínas Fosfatasas/fisiología , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Mapas de Interacción de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Alineación de Secuencia , Transducción de Señal/genética , Agua/metabolismo
18.
Plant Physiol ; 161(2): 931-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23370718

RESUMEN

Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABA-INSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches. We also discovered that PYR/PYL receptors and clade A PP2Cs are crucial for the hydrotropic response that takes place to guide root growth far from regions with low water potential. Thus, an ABA-hypersensitive pp2c quadruple mutant showed enhanced hydrotropism, whereas an ABA-insensitive sextuple pyr/pyl mutant showed reduced hydrotropic response, indicating that ABA-dependent inhibition of PP2Cs by PYR/PYLs is required for the proper perception of a moisture gradient.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Immunoblotting , Espectrometría de Masas , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/metabolismo , Agua/metabolismo , Agua/farmacología
19.
J Exp Bot ; 65(15): 4451-64, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24863435

RESUMEN

Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Quinolonas/metabolismo , Solanum lycopersicum/metabolismo , Sulfonamidas/metabolismo , Ácido Abscísico/agonistas , Adaptación Fisiológica , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Transporte de Membrana/metabolismo , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Proteína Fosfatasa 2C
20.
Proc Natl Acad Sci U S A ; 108(14): 5891-6, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436041

RESUMEN

The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Nicotiana/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Alcaloides/biosíntesis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA