Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Microbiol ; 121(2): 291-303, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169053

RESUMEN

Pseudomonas aeruginosa is an important opportunistic pathogen. Several of its virulence-related processes, including the synthesis of pyocyanin (PYO) and biofilm formation, are controlled by quorum sensing (QS). It has been shown that the alternative sigma factor RpoS regulates QS through the reduction of lasR and rhlR transcription (encoding QS regulators). However, paradoxically, the absence of RpoS increases PYO production and biofilm development (that are RhlR dependent) by unknown mechanisms. Here, we show that RpoS represses pqsE transcription, which impacts the stability and activity of RhlR. In the absence of RpoS, rhlR transcript levels are reduced but not the RhlR protein concentration, presumably by its stabilization by PqsE, whose expression is increased. We also report that PYO synthesis and the expression of pqsE and phzA1B1C1D1E1F1G1 operon exhibit the same pattern at different RpoS concentrations, suggesting that the RpoS-dependent PYO production is due to its ability to modify PqsE concentration, which in turn modulates the activation of the phzA1 promoter by RhlR. Finally, we demonstrate that RpoS favors the expression of Vfr, which activates the transcription of lasR and rhlR. Our study contributes to the understanding of how RpoS modulates the QS response in P. aeruginosa, exerting both negative and positive regulation.


Asunto(s)
Percepción de Quorum , Factor sigma , Percepción de Quorum/genética , Factor sigma/genética , Factor sigma/metabolismo , Pseudomonas aeruginosa/metabolismo , Biopelículas , Piocianina , Operón , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Microbiology (Reading) ; 169(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819040

RESUMEN

Pseudomonas aeruginosa is a widespread γ-proteobacterium and an important opportunistic pathogen. The genetically diverse P. aeruginosa phylogroup 3 strains are characterized by producing the pore-forming ExlA toxin and by their lack of a type III secretion system. However, like all strains of this species, they produce several virulence-associated traits, such as elastase, rhamnolipids and pyocyanin, which are regulated by quorum sensing (QS). The P. aeruginosa QS response comprises three systems (Las, Rhl and Pqs, respectively) that hierarchically regulate these virulence factors. The Pqs QS system is composed of the PqsR transcriptional factor, which, coupled with the alkyl-quinolones HHQ or PQS, activates the transcription of the pqsABCDE operon. The products of the first four genes of this operon produce HHQ, which is then converted to PQS by PqsH, while PqsE forms a complex with RhlR and stabilizes it. In this study we report that mutations affecting the Pqs system are particularly common in phylogroup 3 strains. To better understand QS in phylogroup 3 strains we studied strain MAZ105 isolated from tomato rhizosphere and showed that it contains mutations in the central QS transcriptional regulator, LasR, and in the gene encoding the PqsA enzyme involved in the synthesis of PQS. However, it can still produce QS-regulated virulence factors and is virulent in Galleria mellonella and mildly pathogenic in the mouse abscess/necrosis model; our results show that this may be due to the expression of pqsE from a different PqsR-independent promoter than the pqsA promoter. Our results indicate that using anti-virulence therapy based on targeting the PQS system will not be effective against infections by P. aeruginosa phylogroup 3 strains.


Asunto(s)
Percepción de Quorum , Solanum lycopersicum , Animales , Ratones , Percepción de Quorum/genética , Pseudomonas aeruginosa/metabolismo , Rizosfera , Transducción de Señal/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
J Basic Microbiol ; 63(1): 51-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36207285

RESUMEN

Pyocyanin is a phenazine with redox activity produced by Pseudomonas aeruginosa that is harmful to other bacteria and eukaryotic organisms by generating reactive oxygen species. Gene regulation of pyocyanin synthesis has been addressed in the PAO1 and PA14 strains and involves the three-quorum sensing systems Las, Rhl, and Pqs; the regulators RsaL, MvaU, and RpoS, and the posttranscriptional Rsm system, among others. Here, we determined how RsmA regulates pyocyanin synthesis in P. aeruginosa ID4365, an overproducer strain. We found that, in the protease peptone glucose ammonium salts medium, rsmA inactivation increases pyocyanin production compared with the wild-type strains ID4365, PAO, and PA14. We showed that RsmA regulates inversely the expression of both phz operons involved in pyocyanin synthesis; particularly the phz2 operon is positively regulated at the transcriptional level indirectly through MvaU. In addition, we found that the phz1 operon contributes mainly to pyocyanin synthesis and that RsmA negatively regulates phzM and phzS expression. Finally, we showed that translation of the sigma factor RpoS is positively regulated by RsmA, and the expression of rpoS under an independent promoter decreases pyocyanin production in the IDrsmA strain. These results indicate that RsmA regulates not only the genes for pyocyanin production but also their regulators.


Asunto(s)
Pseudomonas aeruginosa , Piocianina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacterias/metabolismo
4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628871

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Glucosafosfato Deshidrogenasa , Humanos , Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Genotipo , Mutación , Fenotipo
5.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511272

RESUMEN

Giardiasis, which is caused by Giardia lamblia infection, is a relevant cause of morbidity and mortality worldwide. Because no vaccines are currently available to treat giardiasis, chemotherapeutic drugs are the main options for controlling infection. Evidence has shown that the nitro drug nitazoxanide (NTZ) is a commonly prescribed treatment for giardiasis; however, the mechanisms underlying NTZ's antigiardial activity are not well-understood. Herein, we identified the glucose-6-phosphate::6-phosphogluconate dehydrogenase (GlG6PD::6PGL) fused enzyme as a nitazoxanide target, as NTZ behaves as a GlG6PD::6PGL catalytic inhibitor. Furthermore, fluorescence assays suggest alterations in the stability of GlG6PD::6PGL protein, whereas the results indicate a loss of catalytic activity due to conformational and folding changes. Molecular docking and dynamic simulation studies suggest a model of NTZ binding on the active site of the G6PD domain and near the structural NADP+ binding site. The findings of this study provide a novel mechanistic basis and strategy for the antigiardial activity of the NTZ drug.


Asunto(s)
Giardia lamblia , Giardiasis , Humanos , Giardiasis/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Tiazoles/farmacología , Tiazoles/uso terapéutico
6.
Mol Microbiol ; 116(4): 1113-1123, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418194

RESUMEN

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen that represents an important health hazard. The quorum-sensing response regulates the expression of several virulence factors and involves three regulons: Las, Rhl, and Pqs. The P. aeruginosa ATCC 9027 strain, which belongs to the genetically diverse PA7 clade, contains a frame-shift mutation in the pqsR gene that encodes a transcriptional activator necessary for pyocyanin (PYO) synthesis in type strains PAO1 and PA14. Here we characterize the PqsE-dependent production of PYO in strain ATCC 9027. We show that this strain expresses pqsE independently of PqsR and in the absence of quinolone production, and that PqsE promotes the RhlR-dependent production of PYO, yet this production is not strictly dependent on PqsE. In addition, we show that in both strains ATCC 9027 and PAO1, PqsE overexpression causes an increased concentration of RhlR and enhances PYO production but does not affect rhamnolipids (RL) production in the same way. These results suggest that PqsE interaction with RhlR preferentially modifies its ability to activate transcription of genes involved in PYO production and provide new evidence about PqsE-dependent RhlR activation, highlighting the variability of the QS response among different P. aeruginosa clades and strains. HIGHLIGHTS: Pseudomonas aeruginosa ATCC 9027 is able to produce pyocyanin in phosphate limiting conditions, even in the absence of a functional PqsR. This strain does not produce alkyl quinolones like PQS and HHQ, but expresses pqsE. Synthesis of pyocyanin by ATCC 9027 is only partially dependent on pqsE. The overexpression of pqsE in the ATCC 9027 and PAO1 strains causes pyocyanin overproduction. The overexpression of pqsE in these strains causes an increased RhlR concentration without affecting rhlR transcription or translation. Rhamnolipids production is not affected to the same extent as pyocyanin by overexpression of pqsE in these strains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Percepción de Quorum , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Proteínas Bacterianas/genética , Mutación del Sistema de Lectura , Regulación Bacteriana de la Expresión Génica , Glucolípidos/metabolismo , Humanos , Mutación , Operón , Infecciones por Pseudomonas/microbiología , Quinolonas/metabolismo , Regulón , Transactivadores , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
7.
Microbiology (Reading) ; 168(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301076

RESUMEN

Several Pseudomonas aeruginosa virulence-related traits like pyocyanin are regulated by an intricate regulatory network called quorum sensing (QS) that relies on transcriptional regulators that are activated through binding to a self-produced molecule called an autoinducer (AI). QS is composed of three systems, Las, Rhl and Pqs. In the Las system, the regulatory protein LasR interacts with its AI to activate the other two QS systems. In turn, the Rhl and Pqs systems regulate the expression of multiple virulence-related genes, such as the genes of the reiterated operons phzA1B1C1D1E1F1G1 and phzA2B2C2D2E2F2G2 involved in pyocyanin production. The Las system also regulates the negative regulator RsaL, which provides negative feedback to the QS-response, including repression of pyocyanin synthesis genes. In this work, we describe that LasR can act as a negative regulator of phzA1 transcription and hence of pyocyanin production and that this regulation is independent of RsaL activity. This work contributes to the understanding of QS-dependent pyocyanin production and demonstrates a previously uncharacterized role of LasR as a repressor.


Asunto(s)
Pseudomonas aeruginosa , Piocianina , Piocianina/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Percepción de Quorum/genética , Factores de Transcripción/genética , Fosfatos/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430836

RESUMEN

Treatments to combat giardiasis have been reported to have several drawbacks, partly due to the drug resistance and toxicity of current antiparasitic agents. These constraints have prompted many researchers to investigate new drugs that act against protozoan parasites. Enzyme inhibition is an important means of regulating pathogen metabolism and has recently been identified as a significant alternative target in the search for new treatments. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase (G6PD::6PGL) is a bifunctional enzyme involved in the pentose phosphate pathway (PPP) in Giardia lamblia (G. lamblia). The G. lamblia enzyme is unusual since, unlike the human enzyme, it is a fused enzyme. Here, we show, through inhibition assays, that an in-house chemical library of 120 compounds and four target compounds, named CNZ-7, CNZ-8, CMC-1, and FLP-2, are potent inhibitors of the G. lamblia G6PD::6PGL fused enzyme. With a constant (k2) of 2.3, 3.2, and 2.8 M−1 s−1, respectively, they provoke alterations in the secondary and tertiary protein structure and global stability. As a novel approach, target compounds show antigiardial activity, with IC50 values of 8.7, 15.2, 15.3, and 24.1 µM in trophozoites from G. lamblia. Moreover, these compounds show selectivity against G. lamblia, since, through counter-screening in Caco-2 and HT29 human cells, they were found to have low toxicity. This finding positions these compounds as a potential and attractive starting point for new antigiardial drugs.


Asunto(s)
Giardia lamblia , Giardiasis , Animales , Humanos , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Trofozoítos/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Células CACO-2
9.
Molecules ; 27(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208965

RESUMEN

Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas , Inhibidores Enzimáticos/química , Glucosafosfato Deshidrogenasa , Simulación del Acoplamiento Molecular , Trichomonas vaginalis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/química , Cinética
10.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558035

RESUMEN

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Asunto(s)
Antiprotozoarios , Giardia lamblia , Parásitos , Trichomonas vaginalis , Animales , Humanos , Metronidazol/farmacología , Antiparasitarios/farmacología , Bencimidazoles/farmacología , Antiprotozoarios/farmacología
11.
Molecules ; 26(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34443540

RESUMEN

Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 µM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme's active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.


Asunto(s)
Simulación por Computador , Inhibidores Enzimáticos/farmacología , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Helicobacter pylori/enzimología , Vectores Genéticos/metabolismo , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Helicobacter pylori/efectos de los fármacos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Recombinantes/aislamiento & purificación , Homología Estructural de Proteína
12.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650494

RESUMEN

This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Estabilidad de Enzimas/genética , Glucosafosfato Deshidrogenasa/genética , NADP/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Trichomonas vaginalis/genética , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Estabilidad Proteica , Alineación de Secuencia , Temperatura
13.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326520

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Naftalenosulfonatos de Anilina/química , Catálisis , Dicroismo Circular , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/aislamiento & purificación , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Guanidina , Humanos , Cinética , México , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Programas Informáticos , Temperatura , Tripsina/química
14.
Environ Microbiol ; 21(8): 2964-2976, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31112340

RESUMEN

Pseudomonas aeruginosa is a widely distributed environmental bacterium but is also an opportunistic pathogen that represents an important health hazard due to its high intrinsic antibiotic resistance and its production of virulence factors. The genetic structure of P. aeruginosa populations using whole genome sequences shows the existence of three clades, one of which (PA7 clade) has a higher genetic diversity. These three clades include clinical and environmental isolates that are very diverse in terms of geographical origins and isolation date. Here, we report the characterization of two distinct clonal P. aeruginosa groups that form a part of the PA14 clade (clade 2) sampled from the Churince system in Cuatro Ciénegas Basin (CCB). One of the clonal groups that we report here was isolated in 2011 (group 2A) and was displaced by the other clonal group (2B) in 2015. Both Churince groups are unable to produce pyoverdine but can produce other virulence-associated traits. The existence of these unique P. aeruginosa clonal groups in the Churince system is of ecological and evolutionary significance since the microbiota of this site is generally very distinct from other lineages, and this is the first time that a population of P. aeruginosa has been found in CCB.


Asunto(s)
Variación Genética , Pseudomonas aeruginosa/aislamiento & purificación , Microbiología del Agua , Humanos , México , Pseudomonas aeruginosa/genética
15.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652968

RESUMEN

Gluconacetobacter diazotrophicus PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI. The gene was cloned and expressed as a tagged protein in E. coli to be purified by affinity chromatography. The native state of the G6PD protein in the solution was found to be a tetramer with optimal activity at pH 8.8 and a temperature between 37 and 50 °C. The apparent Km values for G6P and nicotinamide adenine dinucleotide phosphate (NADP+) were 63 and 7.2 µM, respectively. Finally, from the amino acid sequence a three-dimensional (3D) model was obtained, which allowed the arrangement of the amino acids involved in the catalytic activity, which are conserved (RIDHYLGKE, GxGGDLT, and EKPxG) with those of other species, to be identified. This characterization of the enzyme could help to identify new environmental conditions for the knowledge of the plant-microorganism interactions and a better use of GDI in new technological applications.


Asunto(s)
Clonación Molecular , Gluconacetobacter/enzimología , Glucosafosfato Deshidrogenasa/metabolismo , Escherichia coli/metabolismo , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Concentración de Iones de Hidrógeno , Cinética , NADP/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Temperatura
16.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30149622

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway and is highly relevant in the metabolism of Giardialamblia. Previous reports suggested that the G6PD gene is fused with the 6-phosphogluconolactonase (6PGL) gene (6pgl). Therefore, in this work, we decided to characterize the fused G6PD-6PGL protein in Giardialamblia. First, the gene of g6pd fused with the 6pgl gene (6gpd::6pgl) was isolated from trophozoites of Giardialamblia and the corresponding G6PD::6PGL protein was overexpressed and purified in Escherichia coli. Then, we characterized the native oligomeric state of the G6PD::6PGL protein in solution and we found a catalytic dimer with an optimum pH of 8.75. Furthermore, we determined the steady-state kinetic parameters for the G6PD domain and measured the thermal stability of the protein in both the presence and absence of guanidine hydrochloride (Gdn-HCl) and observed that the G6PD::6PGL protein showed alterations in the stability, secondary structure, and tertiary structure in the presence of Gdn-HCl. Finally, computer modeling studies revealed unique structural and functional features, which clearly established the differences between G6PD::6PGL protein from G. lamblia and the human G6PD enzyme, proving that the model can be used for the design of new drugs with antigiardiasic activity. These results broaden the perspective for future studies of the function of the protein and its effect on the metabolism of this parasite as a potential pharmacological target.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Giardia lamblia/enzimología , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Hidrolasas de Éster Carboxílico/genética , ADN Complementario/química , ADN Complementario/genética , Activación Enzimática , Estabilidad de Enzimas , Expresión Génica , Giardia lamblia/genética , Glucosafosfato Deshidrogenasa/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Relación Estructura-Actividad , Temperatura
17.
Int J Mol Sci ; 18(11)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072585

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A- (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A-. Moreover, our study suggests that the G6PD Nefza and G6PD A- mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Mutación , Alelos , Sustitución de Aminoácidos , Activación Enzimática/efectos de los fármacos , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/aislamiento & purificación , Humanos , Cinética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Análisis Espectral , Termodinámica
18.
Appl Microbiol Biotechnol ; 100(23): 9995-10004, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27566690

RESUMEN

Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.


Asunto(s)
Decanoatos/metabolismo , Ingeniería Metabólica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Ramnosa/análogos & derivados , Tensoactivos/metabolismo , Animales , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Genoma Bacteriano , Redes y Vías Metabólicas/genética , Ratones , Operón , Plásmidos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Ramnosa/metabolismo , Análisis de Secuencia de ADN , Virulencia
19.
Int J Mol Sci ; 17(5)2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27213370

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/genética , Mutación , Dominio Catalítico , Clonación Molecular , Biología Computacional/métodos , Cristalografía por Rayos X , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Cinética , México , Modelos Moleculares , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Int J Mol Sci ; 17(12)2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27941691

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.


Asunto(s)
Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Biología Computacional , Glucosafosfato Deshidrogenasa/química , Humanos , Mutación , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA