RESUMEN
Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and transmitted by the bite of a sand fly. To date, most available drugs for treatment are toxic and beyond the economic means of those affected by the disease. Protein disulfide isomerase (PDI) is a chaperone protein that plays a major role in the folding of newly synthesized proteins, specifically assisting in disulfide bond formation, breakage, or rearrangement in all non-native proteins. In previous work, we demonstrated that Leishmania major PDI (LmPDI) has an essential role in pathogen virulence. Furthermore, inhibition of LmPDI further blocked parasite infection in macrophages. In this study, we utilized a computer-aided approach to design a series of LmPDI inhibitors. Fragment-based virtual screening allowed for the understanding of the inhibitors' modes of action on LmPDI active sites. The generated compounds obtained after multiple rounds of virtual screening were synthesized and significantly inhibited target LmPDI reductase activity and were shown to decrease in vitro parasite growth in human monocyte-derived macrophages. This novel cheminformatics and synthetic approach led to the identification of a new series of compounds that might be optimized into novel drugs, likely more specific and less toxic for the treatment of leishmaniasis.
Asunto(s)
Antiinfecciosos/síntesis química , Inhibidores Enzimáticos/química , Hexaclorofeno/síntesis química , Leishmania major/enzimología , Leishmaniasis/tratamiento farmacológico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/síntesis química , Antiinfecciosos/farmacología , Dominio Catalítico , Diseño Asistido por Computadora , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Hexaclorofeno/farmacología , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-ActividadRESUMEN
The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.
Asunto(s)
Proteínas Bacterianas , Clostridium perfringens , Enterotoxinas , Histidina Quinasa , Esporas Bacterianas , Clostridium perfringens/genética , Clostridium perfringens/enzimología , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Enterotoxinas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , RatonesRESUMEN
The Mexican tetra (Astyanax mexicanus) is one of the fresh water teleost fish models in evolutionary developmental biology. The existence of two morphs: eyed, pigmented surface fish and blind depigmented cavefish from multiple cave populations, provides a unique system to study adaptive radiation. Compared to the adult surface fish, cavefish have large oral jaws with an increased number of structurally-complex teeth. Early tooth development has not been studied in detail in cavefish populations. In this study, bone-stained growth series and vital dye staining was used to trace the development and replacement of dentitions in Pachón cavefish. Our results show that first tooth eruption was delayed in cavefish compared to the surface fish. In particular, the first tooth eruption cycle persisted until 35 days post fertilization (dpf). Unlike surface fish, there are multicuspid teeth in cavefish first generation dentition. In addition to the teeth in the marginal oral jaw bones, Pachón cavefish have teeth in the ectopterygoid bone of the palatine roof. Next, we characterised the expression of ectodysplasin signalling pathway genes in tooth-forming regions of surface and cavefish. Interestingly, higher expression of Eda and Edar was found in cavefish compared to the surface fish. The altered ectodysplasin expression needs further investigation to confirm the different molecular mechanisms for tooth development in the oral and pharyngeal regions of surface fish and cavefish.
Asunto(s)
Characidae , Diente , Animales , Ectodisplasinas/genética , Characidae/genética , Evolución Biológica , HuesosRESUMEN
This paper examines how master of occupational therapy students, their occupational therapy instructor, and a community-based licensed clinical social worker collaborated in a service learning art cart program on an outpatient bone marrow transplant unit. As they progressed through the phases of Kolb's model of service learning, occupational therapy students, their occupational therapy instructor, and the licensed clinical social worker were all able to meet mutual goals of serving a unique patient population, increasing knowledge of best practices, and building and fostering university/community relationships.