Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38438256

RESUMEN

Recognizing faces regardless of their viewpoint is critical for social interactions. Traditional theories hold that view-selective early visual representations gradually become tolerant to viewpoint changes along the ventral visual hierarchy. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest a three-stage architecture including an intermediate face-selective patch abruptly achieving invariance to mirror-symmetric face views. Human studies combining neuroimaging and multivariate pattern analysis (MVPA) have provided convergent evidence of view selectivity in early visual areas. However, contradictory conclusions have been reached concerning the existence in humans of a mirror-symmetric representation like that observed in macaques. We believe these contradictions arise from low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two face databases. Analyses of image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across neuroimaging studies, we constructed a network model incorporating three constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network-layers is sufficient to replicate view-tuning in early processing stages and mirror-symmetry in later stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the inconsistent observation of mirror-symmetry across prior studies. Pattern analyses of human fMRI data (of either sex) revealed biases compatible with our model. The model provides a unifying explanation of MVPA studies of viewpoint selectivity and suggests observations of mirror-symmetry originate from ineffectively normalized signal imbalances across different face views.


Asunto(s)
Reconocimiento Facial , Humanos , Masculino , Femenino , Reconocimiento Facial/fisiología , Adulto , Neuroimagen/métodos , Estimulación Luminosa/métodos , Modelos Neurológicos , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto Joven
2.
Neuroimage ; 274: 120138, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116766

RESUMEN

Most neuroimaging studies display results that represent only a tiny fraction of the collected data. While it is conventional to present "only the significant results" to the reader, here we suggest that this practice has several negative consequences for both reproducibility and understanding. This practice hides away most of the results of the dataset and leads to problems of selection bias and irreproducibility, both of which have been recognized as major issues in neuroimaging studies recently. Opaque, all-or-nothing thresholding, even if well-intentioned, places undue influence on arbitrary filter values, hinders clear communication of scientific results, wastes data, is antithetical to good scientific practice, and leads to conceptual inconsistencies. It is also inconsistent with the properties of the acquired data and the underlying biology being studied. Instead of presenting only a few statistically significant locations and hiding away the remaining results, studies should "highlight" the former while also showing as much as possible of the rest. This is distinct from but complementary to utilizing data sharing repositories: the initial presentation of results has an enormous impact on the interpretation of a study. We present practical examples and extensions of this approach for voxelwise, regionwise and cross-study analyses using publicly available data that was analyzed previously by 70 teams (NARPS; Botvinik-Nezer, et al., 2020), showing that it is possible to balance the goals of displaying a full set of results with providing the reader reasonably concise and "digestible" findings. In particular, the highlighting approach sheds useful light on the kind of variability present among the NARPS teams' results, which is primarily a varied strength of agreement rather than disagreement. Using a meta-analysis built on the informative "highlighting" approach shows this relative agreement, while one using the standard "hiding" approach does not. We describe how this simple but powerful change in practice-focusing on highlighting results, rather than hiding all but the strongest ones-can help address many large concerns within the field, or at least to provide more complete information about them. We include a list of practical suggestions for results reporting to improve reproducibility, cross-study comparisons and meta-analyses.


Asunto(s)
Neuroimagen , Humanos , Reproducibilidad de los Resultados , Sesgo , Sesgo de Selección
3.
J Neurosci ; 41(6): 1130-1141, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568446

RESUMEN

Resting-state fMRI (rsfMRI) reveals brain dynamics in a task-unconstrained environment as subjects let their minds wander freely. Consequently, resting subjects navigate a rich space of cognitive and perceptual states (i.e., ongoing experience). How this ongoing experience shapes rsfMRI summary metrics (e.g., functional connectivity) is unknown, yet likely to contribute uniquely to within- and between-subject differences. Here we argue that understanding the role of ongoing experience in rsfMRI requires access to standardized, temporally resolved, scientifically validated first-person descriptions of those experiences. We suggest best practices for obtaining those descriptions via introspective methods appropriately adapted for use in fMRI research. We conclude with a set of guidelines for fusing these two data types to answer pressing questions about the etiology of rsfMRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/normas , Guías de Práctica Clínica como Asunto/normas , Descanso/fisiología , Pensamiento/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/psicología , Descanso/psicología
4.
Neuroimage ; 259: 119424, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781079

RESUMEN

Wakefulness levels modulate estimates of functional connectivity (FC), and, if unaccounted for, can become a substantial confound in resting-state fMRI. Unfortunately, wakefulness is rarely monitored due to the need for additional concurrent recordings (e.g., eye tracking, EEG). Recent work has shown that strong fluctuations around 0.05Hz, hypothesized to be CSF inflow, appear in the fourth ventricle (FV) when subjects fall asleep, and that they correlate significantly with the global signal. The analysis of these fluctuations could provide an easy way to evaluate wakefulness in fMRI-only data and improve our understanding of FC during sleep. Here we evaluate this possibility using the 7T resting-state sample from the Human Connectome Project (HCP). Our results replicate the observation that fourth ventricle ultra-slow fluctuations (∼0.05Hz) with inflow-like characteristics (decreasing in intensity for successive slices) are present in scans during which subjects did not comply with instructions to keep their eyes open (i.e., drowsy scans). This is true despite the HCP data not being optimized for the detection of inflow-like effects. In addition, time-locked BOLD fluctuations of the same frequency could be detected in large portions of grey matter with a wide range of temporal delays and contribute in significant ways to our understanding of how FC changes during sleep. First, these ultra-slow fluctuations explain half of the increase in global signal that occurs during descent into sleep. Similarly, global shifts in FC between awake and sleep states are driven by changes in this slow frequency band. Second, they can influence estimates of inter-regional FC. For example, disconnection between frontal and posterior components of the Defulat Mode Network (DMN) typically reported during sleep were only detectable after regression of these ultra-slow fluctuations. Finally, we report that the temporal evolution of the power spectrum of these ultra-slow FV fluctuations can help us reproduce sample-level sleep patterns (e.g., a substantial number of subjects descending into sleep 3 minutes following scanning onset), partially rank scans according to overall drowsiness levels, and predict individual segments of elevated drowsiness (at 60 seconds resolution) with 71% accuracy.


Asunto(s)
Imagen por Resonancia Magnética , Vigilia , Encéfalo , Electroencefalografía/métodos , Cuarto Ventrículo , Humanos , Imagen por Resonancia Magnética/métodos , Sueño
5.
Hum Brain Mapp ; 41(11): 3133-3146, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32329951

RESUMEN

We compared resting state (RS) functional connectivity and task-based fMRI to lateralize language dominance in 30 epilepsy patients (mean age = 33; SD = 11; 12 female), a measure used for presurgical planning. Language laterality index (LI) was calculated from task fMRI in frontal, temporal, and frontal + temporal regional masks using LI bootstrap method from SPM12. RS language LI was assessed using two novel methods of calculating RS language LI from bilateral Broca's area seed based connectivity maps across regional masks and multiple thresholds (p < .05, p < .01, p < .001, top 10% connections). We compared LI from task and RS fMRI continuous values and dominance classifications. We found significant positive correlations between task LI and RS LI when functional connectivity thresholds were set to the top 10% of connections. Concordance of dominance classifications ranged from 20% to 30% for the intrahemispheric resting state LI method and 50% to 63% for the resting state LI intra- minus interhemispheric difference method. Approximately 40% of patients left dominant on task showed RS bilateral dominance. There was no difference in LI concordance between patients with right-sided and left-sided resections. Early seizure onset (<6 years old) was not associated with atypical language dominance during task-based or RS fMRI. While a relationship between task LI and RS LI exists in patients with epilepsy, language dominance is less lateralized on RS than task fMRI. Concordance of language dominance classifications between task and resting state fMRI depends on brain regions surveyed and RS LI calculation method.


Asunto(s)
Corteza Cerebral/fisiopatología , Conectoma/métodos , Epilepsia Refractaria/fisiopatología , Lateralidad Funcional/fisiología , Lenguaje , Red Nerviosa/fisiopatología , Adulto , Corteza Cerebral/diagnóstico por imagen , Epilepsia Refractaria/diagnóstico por imagen , Imagen Eco-Planar/métodos , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Cuidados Preoperatorios , Adulto Joven
6.
Neuroimage ; 188: 322-334, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553044

RESUMEN

Interest in real-time fMRI neurofeedback has grown exponentially over the past few years, both for use as a basic science research tool, and as part of the search for novel clinical interventions for neurological and psychiatric illnesses. In order to expand the range of questions which can be addressed with this tool however, new neurofeedback methods must be developed, going beyond feedback of activations in a single region. These new methods, several of which have already been proposed, are by their nature complex, involving many possible parameters. Here we suggest a framework for evaluating and optimizing algorithms for use in a real-time setting, before beginning the neurofeedback experiment, by offline simulations of algorithm output using a previously collected dataset. We demonstrate the application of this framework on the instantaneous proxy for correlations which we developed for training connectivity between different network nodes, identify the optimal parameters for use with this algorithm, and compare it to more traditional correlation methods. We also examine the effects of advanced imaging techniques, such as multi-echo acquisition, and the integration of these into the real-time processing stream.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Neuroimagen Funcional/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neurorretroalimentación/métodos , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
7.
Neuroimage ; 202: 116081, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31419613

RESUMEN

This work introduces a novel algorithm for deconvolution of the BOLD signal in multi-echo fMRI data: Multi-echo Sparse Paradigm Free Mapping (ME-SPFM). Assuming a linear dependence of the BOLD percent signal change on the echo time (TE) and using sparsity-promoting regularized least squares estimation, ME-SPFM yields voxelwise time-varying estimates of the changes in the apparent transverse relaxation (ΔR2⁎) without prior knowledge of the timings of individual BOLD events. Our results in multi-echo fMRI data collected during a multi-task event-related paradigm at 3 Tesla demonstrate that the maps of R2⁎ changes obtained with ME-SPFM at the times of the stimulus trials show high spatial and temporal concordance with the activation maps and BOLD signals obtained with standard model-based analysis. This method yields estimates of ΔR2⁎ having physiologically plausible values. Owing to its ability to blindly detect events, ME-SPFM also enables us to map ΔR2⁎ associated with spontaneous, transient BOLD responses occurring between trials. This framework is a step towards deciphering the dynamic nature of brain activity in naturalistic paradigms, resting-state or experimental paradigms with unknown timing of the BOLD events.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Femenino , Humanos , Masculino , Curva ROC , Adulto Joven
8.
Neuroimage ; 202: 116129, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31461679

RESUMEN

Brain functional connectivity (FC) changes have been measured across seconds using fMRI. This is true for both rest and task scenarios. Moreover, it is well accepted that task engagement alters FC, and that dynamic estimates of FC during and before task events can help predict their nature and performance. Yet, when it comes to dynamic FC (dFC) during rest, there is no consensus about its origin or significance. Some argue that rest dFC reflects fluctuations in on-going cognition, or is a manifestation of intrinsic brain maintenance mechanisms, which could have predictive clinical value. Conversely, others have concluded that rest dFC is mostly the result of sampling variability, head motion or fluctuating sleep states. Here, we present novel analyses suggesting that rest dFC is influenced by short periods of spontaneous cognitive-task-like processes, and that the cognitive nature of such mental processes can be inferred blindly from the data. As such, several different behaviorally relevant whole-brain FC configurations may occur during a single rest scan even when subjects were continuously awake and displayed minimal motion. In addition, using low dimensional embeddings as visualization aids, we show how FC states-commonly used to summarize and interpret resting dFC-can accurately and robustly reveal periods of externally imposed tasks; however, they may be less effective in capturing periods of distinct cognition during rest.


Asunto(s)
Cognición/fisiología , Conectoma/métodos , Descanso/fisiología , Pensamiento/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
9.
Neuroimage ; 197: 13-23, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31015027

RESUMEN

Studies of visual temporal frequency preference typically examine frequencies under 20 Hz and measure local activity to evaluate the sensitivity of different cortical areas to variations in temporal frequencies. Most of these studies have not attempted to map preferred temporal frequency within and across visual areas, nor have they explored in detail, stimuli at gamma frequency, which recent research suggests may have potential clinical utility. In this study, we address this gap by using functional magnetic resonance imaging (fMRI) to measure response to flickering visual stimuli varying in frequency from 1 to 40 Hz. We apply stimulation in both a block design to examine task response and a steady-state design to examine functional connectivity. We observed distinct activation patterns between 1 Hz and 40 Hz stimuli. We also found that the correlation between medial thalamus and visual cortex was modulated by the temporal frequency. The modulation functions and tuned frequencies are different for the visual activity and thalamo-visual correlations. Using both fMRI activity and connectivity measurements, we show evidence for a temporal frequency specific organization across the human visual system.


Asunto(s)
Tálamo/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Factores de Tiempo , Vías Visuales/fisiología , Adulto Joven
10.
Neuroimage ; 188: 502-514, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30576850

RESUMEN

Given the dynamic nature of the human brain, there has been an increasing interest in investigating short-term temporal changes in functional connectivity, also known as dynamic functional connectivity (dFC), i.e., the time-varying inter-regional statistical dependence of blood oxygenation level-dependent (BOLD) signal within the constraints of a single scan. Numerous methodologies have been proposed to characterize dFC during rest and task, but few studies have compared them in terms of their efficacy to capture behavioral and clinically relevant dynamics. This is mostly due to lack of a well-defined ground truth, especially for rest scans. In this study, with a multitask dataset (rest, memory, video, and math) serving as ground truth, we investigated the efficacy of several dFC estimation techniques at capturing cognitively relevant dFC modulation induced by external tasks. We evaluated two framewise methods (dFC estimates for a single time point): dynamic conditional correlation (DCC) and jackknife correlation (JC); and five window-based methods: sliding window correlation (SWC), sliding window correlation with L1-regularization (SWC_L1), a combination of DCC and SWC called moving average DCC (DCC_MA), multiplication of temporal derivatives (MTD), and a variant of jackknife correlation called delete-d jackknife correlation (dJC). The efficacy is defined as each dFC metric's ability to successfully subdivide multitask scans into cognitively homogenous segments (even if those segments are not temporally continuous). We found that all window-based dFC methods performed well for commonly used window lengths (WL ≥ 30sec), with sliding window methods (SWC, SWC_L1) as well as the hybrid DCC_MA approach performing slightly better. For shorter window lengths (WL ≤ 15sec), DCC_MA and dJC produced the best results. Neither framewise method (i.e., DCC and JC) led to dFC estimates with high accuracy.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Conectoma/normas , Humanos , Imagen por Resonancia Magnética/normas
11.
Neuroimage ; 180(Pt B): 526-533, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28780401

RESUMEN

The temporal evolution of functional connectivity (FC) within the confines of individual scans is nowadays often explored with functional neuroimaging. This is particularly true for resting-state; yet, FC-dynamics have also been investigated as subjects engage on numerous tasks. It is these research efforts that constitute the core of this survey. First, empirical observations on how FC differs between task and rest-independent of temporal scale-are reviewed, as they underscore how, despite overall preservation of network topography, the brain's FC does reconfigure in systematic ways to accommodate task demands. Next, reports on the relationships between instantaneous FC and perception/performance in subsequent trials are discussed. Similarly, research where different aspects of task-concurrent FC-dynamics are explored or utilized to predict ongoing mental states are also examined. The manuscript finishes with an incomplete list of challenges that hopefully fuels future work in this vibrant area of neuroscientific research. Overall, this review concludes that task-concurrent FC-dynamics, when properly characterized, are relevant to behavior, and that their translational value holds considerable promise.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Descanso/fisiología , Mapeo Encefálico/métodos , Humanos
12.
Neuroimage ; 166: 99-109, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031531

RESUMEN

Sustaining attention to the task at hand is a crucial part of everyday life, from following a lecture at school to maintaining focus while driving. Lapses in sustained attention are frequent and often problematic, with conditions such as attention deficit hyperactivity disorder affecting millions of people worldwide. Recent work has had some success in finding signatures of sustained attention in whole-brain functional connectivity (FC) measures during basic tasks, but since FC can be dynamic and task-dependent, it remains unclear how fully these signatures would generalize to a more complex and naturalistic scenario. To this end, we used a previously defined whole-brain FC network - a marker of attention that was derived from a sustained attention task - to predict the ability of participants to recall material during a free-viewing reading task. Though the predictive network was trained on a different task and set of participants, the strength of FC in the sustained attention network predicted reading recall significantly better than permutation tests where behavior was scrambled to simulate chance performance. To test the generalization of the method used to derive the sustained attention network, we applied the same method to our reading task data to find a new FC network whose strength specifically predicts reading recall. Even though the sustained attention network provided significant prediction of recall, the reading network was more predictive of recall accuracy. The new reading network's spatial distribution indicates that reading recall is highest when temporal pole regions have higher FC with left occipital regions and lower FC with bilateral supramarginal gyrus. Right cerebellar to right frontal connectivity is also indicative of poor reading recall. We examine these and other differences between the two predictive FC networks, providing new insight into the task-dependent nature of FC-based performance metrics.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Comprensión/fisiología , Conectoma/métodos , Recuerdo Mental/fisiología , Red Nerviosa/fisiología , Lectura , Adulto , Biomarcadores , Encéfalo/diagnóstico por imagen , Medidas del Movimiento Ocular , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
13.
Neuroimage ; 180(Pt B): 495-504, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28549798

RESUMEN

Functional connectivity (FC) has been widely used to study the functional organization of temporally correlated and spatially distributed brain regions. Recent studies of FC dynamics, quantified by windowed correlations, provide new insights to analyze dynamic, context-dependent reconfiguration of brain networks. A set of reoccurring whole-brain connectivity patterns at rest, referred to as FC states, have been identified, hypothetically reflecting underlying cognitive processes or mental states. We posit that the mean FC information for a given subject represents a significant contribution to the group-level FC dynamics. We show that the subject-specific FC profile, termed as FC individuality, can be removed to increase sensitivity to cognitively relevant FC states. To assess the impact of the FC individuality and task-specific FC modulation on the group-level FC dynamics analysis, we generate and analyze group studies of four subjects engaging in four cognitive conditions (rest, simple math, two-back memory, and visual attention task). We also propose a model to quantitatively evaluate the effect of two factors, namely, subject-specific and task-specific modulation on FC dynamics. We show that FC individuality is a predominant factor in group-level FC variability, and the embedded cognitively relevant FC states are clearly visible after removing the individual's connectivity profile. Our results challenge the current understanding of FC states and emphasize the importance of individual heterogeneity in connectivity dynamics analysis.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Cognición/fisiología , Red Nerviosa/fisiología , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
14.
Proc Natl Acad Sci U S A ; 112(28): 8762-7, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124112

RESUMEN

Functional connectivity (FC) patterns in functional MRI exhibit dynamic behavior on the scale of seconds, with rich spatiotemporal structure and limited sets of whole-brain, quasi-stable FC configurations (FC states) recurring across time and subjects. Based on previous evidence linking various aspects of cognition to group-level, minute-to-minute FC changes in localized connections, we hypothesized that whole-brain FC states may reflect the global, orchestrated dynamics of cognitive processing on the scale of seconds. To test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. FC states computed within windows as short as 22.5 s permitted robust tracking of cognition in single subjects with near perfect accuracy. Accuracy dropped markedly for subjects with the lowest task performance. Spatially restricting FC information decreased accuracy at short time scales, emphasizing the distributed nature of whole-brain FC dynamics, beyond univariate magnitude changes, as valuable markers of cognition.


Asunto(s)
Encéfalo/fisiología , Cognición , Humanos , Imagen por Resonancia Magnética
15.
Neuroimage ; 154: 206-218, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773827

RESUMEN

Here we report an exploratory within-subject variance decomposition analysis conducted on a task-based fMRI dataset with an unusually large number of repeated measures (i.e., 500 trials in each of three different subjects) distributed across 100 functional scans and 9 to 10 different sessions. Within-subject variance was segregated into four primary components: variance across-sessions, variance across-runs within a session, variance across-blocks within a run, and residual measurement/modeling error. Our results reveal inhomogeneous and distinct spatial distributions of these variance components across significantly active voxels in grey matter. Measurement error is dominant across the whole brain. Detailed evaluation of the remaining three components shows that across-session variance is the second largest contributor to total variance in occipital cortex, while across-runs variance is the second dominant source for the rest of the brain. Network-specific analysis revealed that across-block variance contributes more to total variance in higher-order cognitive networks than in somatosensory cortex. Moreover, in some higher-order cognitive networks across-block variance can exceed across-session variance. These results help us better understand the temporal (i.e., across blocks, runs and sessions) and spatial distributions (i.e., across different networks) of within-subject natural variability in estimates of task responses in fMRI. They also suggest that different brain regions will show different natural levels of test-retest reliability even in the absence of residual artifacts and sufficiently high contrast-to-noise measurements. Further confirmation with a larger sample of subjects and other tasks is necessary to ensure generality of these results.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Neuroimagen Funcional/métodos , Sustancia Gris/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Estudios Longitudinales , Masculino , Reconocimiento Visual de Modelos/fisiología , Adulto Joven
16.
Neuroimage ; 141: 452-468, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27475290

RESUMEN

Multi-echo fMRI, particularly the multi-echo independent component analysis (ME-ICA) algorithm, has previously proven useful for increasing the sensitivity and reducing false positives for functional MRI (fMRI) based resting state connectivity studies. Less is known about its efficacy for task-based fMRI, especially at the single subject level. This work, which focuses exclusively on individual subject results, compares ME-ICA to single-echo fMRI and a voxel-wise T2(⁎) weighted combination of multi-echo data for task-based fMRI under the following scenarios: cardiac-gated block designs, constant repetition time (TR) block designs, and constant TR rapid event-related designs. Performance is evaluated primarily in terms of sensitivity (i.e., activation extent, activation magnitude, percent detected trials and effect size estimates) using five different tasks expected to evoke neuronal activity in a distributed set of regions. The ME-ICA algorithm significantly outperformed all other evaluated processing alternatives in all scenarios. Largest improvements were observed for the cardiac-gated dataset, where ME-ICA was able to reliably detect and remove non-neural T1 signal fluctuations caused by non-constant repetition times. Although ME-ICA also outperformed the other options in terms of percent detection of individual trials for rapid event-related experiments, only 46% of all events were detected after ME-ICA; suggesting additional improvements in sensitivity are required to reliably detect individual short event occurrences. We conclude the manuscript with a detailed evaluation of ME-ICA outcomes and a discussion of how the ME-ICA algorithm could be further improved. Overall, our results suggest that ME-ICA constitutes a versatile, powerful approach for advanced denoising of task-based fMRI, not just resting-state data.


Asunto(s)
Algoritmos , Encéfalo/fisiología , Técnicas de Imagen Sincronizada Cardíacas/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Análisis de Componente Principal , Adulto , Artefactos , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido , Análisis y Desempeño de Tareas
17.
Cereb Cortex ; 25(12): 4667-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25405938

RESUMEN

It was recently shown that when large amounts of task-based blood oxygen level-dependent (BOLD) data are combined to increase contrast- and temporal signal-to-noise ratios, the majority of the brain shows significant hemodynamic responses time-locked with the experimental paradigm. Here, we investigate the biological significance of such widespread activations. First, the relationship between activation extent and task demands was investigated by varying cognitive load across participants. Second, the tissue specificity of responses was probed using the better BOLD signal localization capabilities of a 7T scanner. Finally, the spatial distribution of 3 primary response types--namely positively sustained (pSUS), negatively sustained (nSUS), and transient--was evaluated using a newly defined voxel-wise waveshape index that permits separation of responses based on their temporal signature. About 86% of gray matter (GM) became significantly active when all data entered the analysis for the most complex task. Activation extent scaled with task load and largely followed the GM contour. The most common response type was nSUS BOLD, irrespective of the task. Our results suggest that widespread activations associated with extremely large single-subject functional magnetic resonance imaging datasets can provide valuable information about the functional organization of the brain that goes undetected in smaller sample sizes.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Adulto , Atención/fisiología , Interpretación Estadística de Datos , Discriminación en Psicología/fisiología , Femenino , Sustancia Gris/fisiología , Humanos , Masculino , Proyectos de Investigación , Percepción Visual/fisiología , Adulto Joven
18.
Proc Natl Acad Sci U S A ; 109(14): 5487-92, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431587

RESUMEN

The brain is the body's largest energy consumer, even in the absence of demanding tasks. Electrophysiologists report on-going neuronal firing during stimulation or task in regions beyond those of primary relationship to the perturbation. Although the biological origin of consciousness remains elusive, it is argued that it emerges from complex, continuous whole-brain neuronal collaboration. Despite converging evidence suggesting the whole brain is continuously working and adapting to anticipate and actuate in response to the environment, over the last 20 y, task-based functional MRI (fMRI) have emphasized a localizationist view of brain function, with fMRI showing only a handful of activated regions in response to task/stimulation. Here, we challenge that view with evidence that under optimal noise conditions, fMRI activations extend well beyond areas of primary relationship to the task; and blood-oxygen level-dependent signal changes correlated with task-timing appear in over 95% of the brain for a simple visual stimulation plus attention control task. Moreover, we show that response shape varies substantially across regions, and that whole-brain parcellations based on those differences produce distributed clusters that are anatomically and functionally meaningful, symmetrical across hemispheres, and reproducible across subjects. These findings highlight the exquisite detail lying in fMRI signals beyond what is normally examined, and emphasize both the pervasiveness of false negatives, and how the sparseness of fMRI maps is not a result of localized brain function, but a consequence of high noise and overly strict predictive response models.


Asunto(s)
Encéfalo/fisiología , Modelos Teóricos , Análisis y Desempeño de Tareas , Humanos , Imagen por Resonancia Magnética
19.
Neuroimage ; 99: 80-92, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24844742

RESUMEN

Multi-variate pattern analysis (MVPA) applied to BOLD-fMRI has proven successful at decoding complicated fMRI signal patterns associated with a variety of cognitive processes. One cognitive process, not yet investigated, is the mental representation of "Yes/No" thoughts that precede the actual overt response to a binary "Yes/No" question. In this study, we focus on examining: (1) whether spatial patterns of the hemodynamic response carry sufficient information to allow reliable decoding of "Yes/No" thoughts; and (2) whether decoding of "Yes/No" thoughts is independent of the intention to respond honestly or dishonestly. To achieve this goal, we conducted two separate experiments. Experiment 1, collected on a 3T scanner, examined the whole brain to identify regions that carry sufficient information to permit significantly above-chance prediction of "Yes/No" thoughts at the group level. In Experiment 2, collected on a 7T scanner, we focused on the regions identified in Experiment 1 to examine the capability of achieving high decoding accuracy at the single subject level. A set of regions--namely right superior temporal gyrus, left supra-marginal gyrus, and left middle frontal gyrus--exhibited high decoding power. Decoding accuracy for these regions increased with trial averaging. When 18 trials were averaged, the median accuracies were 82.5%, 77.5%, and 79.5%, respectively. When trials were separated according to deceptive intentions (set via experimental cues), and classifiers were trained on honest trials, but tested on trials where subjects were asked to deceive, the median accuracies of these regions still reached 66%, 75%, and 78.5%. These results provide evidence that concealed "Yes/No" thoughts are encoded in the BOLD signal, retaining some level of independence from the subject's intentions to answer honestly or dishonestly. These findings also suggest the theoretical possibility for more efficient brain-computer interfaces where subjects only need to think their answers to communicate.


Asunto(s)
Detección de Mentiras/psicología , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/fisiología , Corteza Cerebral/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Intención , Masculino , Estimulación Luminosa , Reproducibilidad de los Resultados , Adulto Joven
20.
Med Image Anal ; 91: 103010, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950937

RESUMEN

Conventionally, analysis of functional MRI (fMRI) data relies on available information about the experimental paradigm to establish hypothesized models of brain activity. However, this information can be inaccurate, incomplete or unavailable in multiple scenarios such as resting-state, naturalistic paradigms or clinical conditions. In these cases, blind estimates of neuronal-related activity can be obtained with paradigm-free analysis methods such as hemodynamic deconvolution. Yet, current formulations of the hemodynamic deconvolution problem have three important limitations: (1) their efficacy strongly depends on the appropriate selection of regularization parameters, (2) being univariate, they do not take advantage of the information present across the brain, and (3) they do not provide any measure of statistical certainty associated with each detected event. Here we propose a novel approach that addresses all these limitations. Specifically, we introduce multivariate sparse paradigm free mapping (Mv-SPFM), a novel hemodynamic deconvolution algorithm that operates at the whole brain level and adds spatial information via a mixed-norm regularization term over all voxels. Additionally, Mv-SPFM employs a stability selection procedure that removes the need to select regularization parameters and also lets us obtain an estimate of the true probability of having a neuronal-related BOLD event at each voxel and time-point based on the area under the curve (AUC) of the stability paths. Besides, we present a formulation tailored for multi-echo fMRI acquisitions (MvME-SPFM), which allows us to better isolate fluctuations of BOLD origin on the basis of their linear dependence with the echo time (TE) and to assign physiologically interpretable units (i.e., changes in the apparent transverse relaxation ΔR2∗) to the resulting deconvolved events. Remarkably, we demonstrate that Mv-SPFM achieves comparable performance even when using a single-echo formulation. We demonstrate that this algorithm outperforms existing state-of-the-art deconvolution approaches, and shows higher spatial and temporal agreement with the activation maps and BOLD signals obtained with a standard model-based linear regression approach, even at the level of individual neuronal events. Furthermore, we show that by employing stability selection, the performance of the algorithm depends less on the selection of temporal and spatial regularization parameters λ and ρ. Consequently, the proposed algorithm provides more reliable estimates of neuronal-related activity, here in terms of ΔR2∗, for the study of the dynamics of brain activity when no information about the timings of the BOLD events is available. This algorithm will be made publicly available as part of the splora Python package.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Algoritmos , Hemodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA