Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Chem Rev ; 123(14): 8988-9009, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37171907

RESUMEN

Biomolecular condensation processes are increasingly recognized as a fundamental mechanism that living cells use to organize biomolecules in time and space. These processes can lead to the formation of membraneless organelles that enable cells to perform distinct biochemical processes in controlled local environments, thereby supplying them with an additional degree of spatial control relative to that achieved by membrane-bound organelles. This fundamental importance of biomolecular condensation has motivated a quest to discover and understand the molecular mechanisms and determinants that drive and control this process. Within this molecular viewpoint, computational methods can provide a unique angle to studying biomolecular condensation processes by contributing the resolution and scale that are challenging to reach with experimental techniques alone. In this Review, we focus on three types of dry-lab approaches: theoretical methods, physics-driven simulations and data-driven machine learning methods. We review recent progress in using these tools for probing biomolecular condensation across all three fields and outline the key advantages and limitations of each of the approaches. We further discuss some of the key outstanding challenges that we foresee the community addressing next in order to develop a more complete picture of the molecular driving forces behind biomolecular condensation processes and their biological roles in health and disease.


Asunto(s)
Condensados Biomoleculares , Orgánulos , Orgánulos/química , Simulación de Dinámica Molecular
2.
J Biol Chem ; 299(6): 104790, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150322

RESUMEN

Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA). We found that the CNB domains exhibit different conformational and folding signatures in the apo state, when bound to cAMP, or when bound to the PKA catalytic subunit, underscoring their ability to adapt to different binding partners. Moreover, we show while the two CNB domains have near-identical structures, their thermodynamic coupling signatures are divergent, leading to distinct cAMP responses and differential mutational effects. Specifically, we demonstrate mutation W260A exerts local and allosteric effects that impact multiple steps of the PKA activation cycle. Taken together, these results highlight the complex interplay between folding energetics, conformational dynamics, and thermodynamic signatures that underlies structurally conserved signaling modules in response to ligand binding and mutational effects.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Modelos Moleculares , Pliegue de Proteína , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Termodinámica , Dominios Proteicos
3.
Nat Commun ; 14(1): 1057, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828841

RESUMEN

The link between cofactor binding and protein activity is well-established. However, how cofactor interactions modulate folding of large proteins remains unknown. We use optical tweezers, clustering and global fitting to dissect the folding mechanism of Drosophila cryptochrome (dCRY), a 542-residue protein that binds FAD, one of the most chemically and structurally complex cofactors in nature. We show that the first dCRY parts to fold are independent of FAD, but later steps are FAD-driven as the remaining polypeptide folds around the cofactor. FAD binds to largely unfolded intermediates, yet with association kinetics above the diffusion-limit. Interestingly, not all FAD moieties are required for folding: whereas the isoalloxazine ring linked to ribitol and one phosphate is sufficient to drive complete folding, the adenosine ring with phosphates only leads to partial folding. Lastly, we propose a dCRY folding model where regions that undergo conformational transitions during signal transduction are the last to fold.


Asunto(s)
Criptocromos , Drosophila , Animales , Drosophila/metabolismo , Criptocromos/metabolismo , Proteínas/metabolismo , Pliegue de Proteína , Flavina-Adenina Dinucleótido/metabolismo
4.
Elife ; 122023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184062

RESUMEN

Predicting the thermodynamic stability of proteins is a common and widely used step in protein engineering, and when elucidating the molecular mechanisms behind evolution and disease. Here, we present RaSP, a method for making rapid and accurate predictions of changes in protein stability by leveraging deep learning representations. RaSP performs on-par with biophysics-based methods and enables saturation mutagenesis stability predictions in less than a second per residue. We use RaSP to calculate ∼ 230 million stability changes for nearly all single amino acid changes in the human proteome, and examine variants observed in the human population. We find that variants that are common in the population are substantially depleted for severe destabilization, and that there are substantial differences between benign and pathogenic variants, highlighting the role of protein stability in genetic diseases. RaSP is freely available-including via a Web interface-and enables large-scale analyses of stability in experimental and predicted protein structures.


Asunto(s)
Aprendizaje Profundo , Humanos , Proteínas/metabolismo , Mutagénesis , Aminoácidos/genética , Estabilidad Proteica , Biología Computacional/métodos
5.
Nat Struct Mol Biol ; 29(11): 1056-1067, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36344848

RESUMEN

Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.


Asunto(s)
Biología Computacional , Furilfuramida , Biología Computacional/métodos , Sitios de Unión , Proteínas/química , Bases de Datos de Proteínas , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA