Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Image Comput Comput Assist Interv ; 16(Pt 3): 219-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24505764

RESUMEN

The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.


Asunto(s)
Algoritmos , Interpretación Estadística de Datos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/anatomía & histología , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Análisis Discriminante , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA