Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2314699121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38198527

RESUMEN

Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in Caenorhabditis elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.


Asunto(s)
Glucólisis , Neuronas , Animales , Metabolismo Energético , Caenorhabditis elegans , Plasticidad Neuronal
2.
Proc Natl Acad Sci U S A ; 119(31): e2204407119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881794

RESUMEN

Cellular metabolism is regulated over space and time to ensure that energy production is efficiently matched with consumption. Fluorescent biosensors are useful tools for studying metabolism as they enable real-time detection of metabolite abundance with single-cell resolution. For monitoring glycolysis, the intermediate fructose 1,6-bisphosphate (FBP) is a particularly informative signal as its concentration is strongly correlated with flux through the whole pathway. Using GFP insertion into the ligand-binding domain of the Bacillus subtilis transcriptional regulator CggR, we developed a fluorescent biosensor for FBP termed HYlight. We demonstrate that HYlight can reliably report the real-time dynamics of glycolysis in living cells and tissues, driven by various metabolic or pharmacological perturbations, alone or in combination with other physiologically relevant signals. Using this sensor, we uncovered previously unknown aspects of ß-cell glycolytic heterogeneity and dynamics.


Asunto(s)
Técnicas Biosensibles , Fructosa , Glucólisis , Análisis de la Célula Individual , Fluorescencia , Fructosa/análisis , Fructosadifosfatos/análisis , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Análisis de la Célula Individual/métodos
3.
Proc Natl Acad Sci U S A ; 115(42): 10654-10659, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30257945

RESUMEN

Axon degeneration, a hallmark of chemotherapy-induced peripheral neuropathy (CIPN), is thought to be caused by a loss of the essential metabolite nicotinamide adenine dinucleotide (NAD+) via the prodegenerative protein SARM1. Some studies challenge this notion, however, and suggest that an aberrant increase in a direct precursor of NAD+, nicotinamide mononucleotide (NMN), rather than loss of NAD+, is responsible. In support of this idea, blocking NMN accumulation in neurons by expressing a bacterial NMN deamidase protected axons from degeneration. We hypothesized that protection could similarly be achieved by reducing NMN production pharmacologically. To achieve this, we took advantage of an alternative pathway for NAD+ generation that goes through the intermediate nicotinic acid mononucleotide (NAMN), rather than NMN. We discovered that nicotinic acid riboside (NAR), a precursor of NAMN, administered in combination with FK866, an inhibitor of the enzyme nicotinamide phosphoribosyltransferase that produces NMN, protected dorsal root ganglion (DRG) axons against vincristine-induced degeneration as well as NMN deamidase. Introducing a different bacterial enzyme that converts NAMN to NMN reversed this protection. Collectively, our data indicate that maintaining NAD+ is not sufficient to protect DRG neurons from vincristine-induced axon degeneration, and elevating NMN, by itself, is not sufficient to cause degeneration. Nonetheless, the combination of FK866 and NAR, which bypasses NMN formation, may provide a therapeutic strategy for neuroprotection.


Asunto(s)
Acrilamidas/farmacología , NAD/metabolismo , Degeneración Nerviosa/prevención & control , Neuronas/efectos de los fármacos , Niacinamida/análogos & derivados , Mononucleótido de Nicotinamida/análogos & derivados , Piperidinas/farmacología , Vincristina/toxicidad , Animales , Antineoplásicos Fitogénicos/toxicidad , Combinación de Medicamentos , Francisella tularensis/enzimología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Niacinamida/farmacología , Mononucleótido de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Compuestos de Piridinio
4.
Proc Natl Acad Sci U S A ; 110(44): 17898-903, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24127608

RESUMEN

MicroRNA-134 (miR-134) serves as a widely accepted model for microRNA function in synaptic plasticity. In this model, synaptic activity stimulates miR-134 expression, which then regulates dendrite growth and spine formation. By using a ratiometric microRNA sensor, we found, unexpectedly, that miR-134 activity in cortical neurons was restricted to interneurons. Using an assay designed to trap microRNA-mRNA complexes, we determined that miR-134 interacted directly with the mRNA encoding the palmitoylation enzyme, DHHC9. This enzyme is known to palmitoylate H-Ras, a modification required for proper membrane trafficking. Treatment with bicuculline, a GABAA receptor antagonist, decreased DHHC9 expression in somatostatin-positive interneurons and membrane localization of an H-Ras reporter in a manner that depended on miR-134. Thus, although miR-134 has been proposed to affect all types of neurons, we showed that functionally active miR-134 is produced in only a selected population of neurons where it influences the expression of targets, such as DHHC9, that regulate membrane targeting of critical signaling molecules.


Asunto(s)
Aciltransferasas/metabolismo , Interneuronas/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Células Secretoras de Somatostatina/metabolismo , Sinapsis/metabolismo , Animales , Bicuculina/farmacología , Western Blotting , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Confocal , Mutagénesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Proc Natl Acad Sci U S A ; 109(50): 20473-8, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184980

RESUMEN

Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Células HEK293 , Humanos , Sustancias Macromoleculares , Ratones , MicroARNs/química , Subunidades de Proteína , Proteínas Proto-Oncogénicas c-crk/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/química , Eliminación de Secuencia , Proteínas de Uniones Estrechas/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(1): 145-50, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19966299

RESUMEN

Aberrant MYC gene expression by the Wnt/beta-catenin pathway is implicated in colorectal carcinogenesis. Wnt/beta-catenin signaling stimulates association of the beta-catenin coactivator complex with two Wnt responsive enhancers (WREs) located in close proximity to MYC gene boundaries. Each enhancer directly binds members of the TCF/Lef family of transcription factors that, in turn, recruit beta-catenin. In a previous report, we showed that the downstream MYC enhancer (MYC 3' WRE) cooperated with the upstream enhancer (MYC 5' WRE) to activate expression of a heterologous reporter gene in response to Wnt/beta-catenin and mitogen signaling. Here we use chromatin conformation capture (3C) to show that the MYC 5' and 3' WREs are juxtaposed at the genomic MYC locus during active transcription. This MYC 5'3' chromatin loop is present in HCT116 human colorectal cancer cells that contain high levels of nuclear beta-catenin and is absent in HEK293 cells that contain trace amounts of nuclear beta-catenin. Depletion of functional beta-catenin/TCF complexes blocks formation of the MYC 5'3 chromatin loop. Furthermore, we find that the chromatin loop is absent in quiescent cells, but is rapidly and transiently induced by serum mitogens in a beta-catenin-dependent manner. Thus, we propose that a distinct chromatin architecture coordinated by beta-catenin/TCF-bound WREs accompanies transcriptional activation of MYC gene expression.


Asunto(s)
Cromatina/química , Elementos de Facilitación Genéticos , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción TCF/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Línea Celular , Cromatina/genética , Expresión Génica , Células HCT116 , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Conformación de Ácido Nucleico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción TCF/genética , Proteínas Wnt/genética , beta Catenina/genética
7.
Proc Natl Acad Sci U S A ; 107(45): 19231-6, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974915

RESUMEN

Predictions of microRNA-mRNA interactions typically rely on bioinformatic algorithms, but these algorithms only suggest the possibility of microRNA binding and may miss important interactions as well as falsely predict others. We developed an affinity purification approach to empirically identify microRNAs associated with the 3'UTR of the mRNA encoding Hand2, a transcription factor essential for cardiac development. In addition to miR-1, a known regulator of Hand2 expression, we determined that the Hand2 3'UTR also associated with miR-133a, a microRNA cotranscribed with miR-1 in cardiac and muscle cells. Using a sequential binding assay, we showed that miR-1 and miR-133a could occupy the Hand2 3'UTR concurrently. miR-133a inhibited Hand2 expression in tissue culture models, and miR-133a double knockout mice had elevated levels of Hand2 mRNA and protein. We conclude that Hand2 is regulated by miR-133a in addition to miR-1. The affinity purification assay should be generally applicable for identifying other microRNA-mRNA interactions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/aislamiento & purificación , Sitios de Unión , Corazón , Humanos , Ratones , Ratones Noqueados , MicroARNs/aislamiento & purificación , Miocardio/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas
9.
Proc Natl Acad Sci U S A ; 107(47): 20382-7, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059906

RESUMEN

Newborn neurons in the dentate gyrus of the adult hippocampus rely upon cAMP response element binding protein (CREB) signaling for their differentiation into mature granule cells and their integration into the dentate network. Among its many targets, the transcription factor CREB activates expression of a gene locus that produces two microRNAs, miR-132 and miR-212. In cultured cortical and hippocampal neurons, miR-132 functions downstream from CREB to mediate activity-dependent dendritic growth and spine formation in response to a variety of signaling pathways. To investigate whether miR-132 and/or miR-212 contribute to the maturation of dendrites in newborn neurons in the adult hippocampus, we inserted LoxP sites surrounding the miR-212/132 locus and specifically targeted its deletion by stereotactically injecting a retrovirus expressing Cre recombinase. Deletion of the miR-212/132 locus caused a dramatic decrease in dendrite length, arborization, and spine density. The miR-212/132 locus may express up to four distinct microRNAs, miR-132 and -212 and their reverse strands miR-132* and -212*. Using ratiometric microRNA sensors, we determined that miR-132 is the predominantly active product in hippocampal neurons. We conclude that miR-132 is required for normal dendrite maturation in newborn neurons in the adult hippocampus and suggest that this microRNA also may participate in other examples of CREB-mediated signaling.


Asunto(s)
Dendritas/genética , Regulación de la Expresión Génica/fisiología , Hipocampo/crecimiento & desarrollo , MicroARNs/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Transducción de Señal/fisiología , Animales , Proteína de Unión a CREB/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Citometría de Flujo , Técnicas de Inactivación de Genes , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , MicroARNs/genética , Microscopía Confocal
10.
Mol Cell Neurosci ; 43(1): 146-56, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19850129

RESUMEN

Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synaptic plasticity remain largely uncharacterized. We show here that the CREB- and activity-regulated microRNA, miR132, is induced during periods of active synaptogenesis. Moreover, miR132 is necessary and sufficient for hippocampal spine formation. Expression of the miR132 target, p250GAP, is inversely correlated with miR132 levels and spinogenesis. Furthermore, knockdown of p250GAP increases spine formation while introduction of a p250GAP mutant unresponsive to miR132 attenuates this activity. Inhibition of miR132 decreases both mEPSC frequency and the number of GluR1-positive spines, while knockdown of p250GAP has the opposite effect. Additionally, we show that the miR132/p250GAP circuit regulates Rac1 activity and spine formation by modulating synapse-specific Kalirin7-Rac1 signaling. These data suggest that neuronal activity regulates spine formation, in part, by increasing miR132 transcription, which in turn activates a Rac1-Pak actin remodeling pathway.


Asunto(s)
Espinas Dendríticas/fisiología , MicroARNs/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Bicuculina/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/ultraestructura , Antagonistas del GABA/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , MicroARNs/genética , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Quinasas p21 Activadas/genética , Proteína de Unión al GTP rac1/genética
11.
Proc Natl Acad Sci U S A ; 105(26): 9093-8, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18577589

RESUMEN

Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway. Introduction of miR132 into hippocampal neurons enhanced dendrite morphogenesis whereas inhibition of miR132 by 2'O-methyl RNA antagonists blocked these effects. Furthermore, neuronal activity inhibited translation of p250GAP, a miR132 target, and siRNA-mediated knockdown of p250GAP mimicked miR132-induced dendrite growth. Experiments using dominant-interfering mutants suggested that Rac signaling is downstream of miR132 and p250GAP. We propose that the miR132-p250GAP pathway plays a key role in activity-dependent structural and functional plasticity.


Asunto(s)
Dendritas/metabolismo , Regulación hacia Abajo/genética , Proteínas Activadoras de GTPasa/genética , MicroARNs/metabolismo , Plasticidad Neuronal , Transmisión Sináptica , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , MicroARNs/genética , Biosíntesis de Proteínas , Ratas , Ratas Sprague-Dawley
12.
Nat Neurosci ; 10(12): 1513-4, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17994015

RESUMEN

Both increases and decreases in methyl CpG-binding protein 2 (MeCP2) levels cause neurodevelopmental defects. We found that MeCP2 translation is regulated by microRNA 132 (miR132). Block of miR132-mediated repression increased MeCP2 and brain-derived neurotrophic factor (BDNF) levels in cultured rat neurons and the loss of MeCP2 reduced BDNF and miR132 levels in vivo. This feedback loop may provide a mechanism for homeostatic control of MeCP2 expression.


Asunto(s)
Proteína de Unión a CREB/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , MicroARNs/farmacología , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Corteza Cerebral/citología , Colforsina/farmacología , Interacciones Farmacológicas , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , ARN Interferente Pequeño/farmacología , Elementos Reguladores de la Transcripción/genética , Tionucleótidos/farmacología
13.
Elife ; 82019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31232686

RESUMEN

Exercise is a potent enhancer of learning and memory, yet we know little of the underlying mechanisms that likely include alterations in synaptic efficacy in the hippocampus. To address this issue, we exposed mice to a single episode of voluntary exercise, and permanently marked activated mature hippocampal dentate granule cells using conditional Fos-TRAP mice. Exercise-activated neurons (Fos-TRAPed) showed an input-selective increase in dendritic spines and excitatory postsynaptic currents at 3 days post-exercise, indicative of exercise-induced structural plasticity. Laser-capture microdissection and RNASeq of activated neurons revealed that the most highly induced transcript was Mtss1L, a little-studied I-BAR domain-containing gene, which we hypothesized could be involved in membrane curvature and dendritic spine formation. shRNA-mediated Mtss1L knockdown in vivo prevented the exercise-induced increases in spines and excitatory postsynaptic currents. Our results link short-term effects of exercise to activity-dependent expression of Mtss1L, which we propose as a novel effector of activity-dependent rearrangement of synapses.


Asunto(s)
Hipocampo/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Plasticidad Neuronal , Neuronas/fisiología , Condicionamiento Físico Animal , Potenciales de Acción , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Ratones
14.
Curr Protoc Cytom ; 88(1): e54, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30556645

RESUMEN

Flow cytometry approaches combined with a genetically encoded targeted fluorescent biosensor are used to determine the subcellular compartmental availability of the oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The availability of free NAD+ can affect the activities of NAD+ -consuming enzymes such as sirtuin, PARP/ARTD, and cyclic ADPR-hydrolase family members. Many methods for measuring the NAD+ available to these enzymes are limited because they cannot determine free NAD+ as it exists in various subcellular compartments distinctly from bound NAD+ or NADH. Here, an approach to express the sensor in mammalian cells, monitor NAD+ -dependent fluorescence intensity changes using flow cytometry approaches, and analyze data obtained is described. The benefit of flow cytometry approaches with the NAD+ sensor is the ability to monitor compartmentalized free NAD+ fluctuations simultaneously within many cells, which greatly facilitates analyses and calibration. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas Biosensibles/métodos , Citometría de Flujo/métodos , Espacio Intracelular/metabolismo , NAD/análisis , Acrilamidas/farmacología , Calibración , Digitonina/farmacología , Inhibidores Enzimáticos/farmacología , Fluorescencia , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Estadística como Asunto
15.
Neuron ; 34(2): 235-44, 2002 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-11970865

RESUMEN

Activity-regulated transcription has been implicated in adaptive plasticity in the CNS. In many instances, this plasticity depends upon the transcription factor CREB. Precisely how neuronal activity regulates CREB remains unclear. To address this issue, we examined the phosphorylation state of components of the CREB transcriptional pathway. We show that NMDA activates transcription of CREB-responsive genes in hippocampal neurons, with ERK responsible for persistent CREB phosphorylation and CaM kinase IV (CaMKIV) responsible for phosphorylating the CREB coactivator, CBP. Ser301 of CBP was identified as a major target of CaMKIV phosphorylation in vitro and in vivo. CaM kinase inhibitors attenuated phosphorylation at Ser301 and blocked CBP-dependent transcription. Additionally, mutation of Ser301 impaired NMDA- and CaMKIV-stimulated transcription. These findings demonstrate that activity-induced CaMKIV signaling contributes to CREB/CBP-dependent transcription by phosphorylating CBP at Ser301.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Transcripción Genética/fisiología , Secuencia de Aminoácidos/genética , Animales , Células COS , Proteína de Unión a CREB , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , N-Metilaspartato/farmacología , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Transactivadores/genética , Transcripción Genética/genética
16.
J Neurosci ; 27(25): 6729-39, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17581960

RESUMEN

The repressor element 1 (RE1) silencing transcription factor (REST) helps preserve the identity of nervous tissue by silencing neuronal genes in non-neural tissues. Moreover, in an epithelial model of tumorigenesis, loss of REST function is associated with loss of adhesion, suggesting the aberrant expression of REST-controlled genes encoding this property. To date, no adhesion molecules under REST control have been identified. Here, we used serial analysis of chromatin occupancy to perform genome-wide identification of REST-occupied target sequences (RE1 sites) in a kidney cell line. We discovered novel REST-binding motifs and found that the number of RE1 sites far exceeded previous estimates. A large family of targets encoding adhesion proteins was identified, as were genes encoding signature proteins of neuroendocrine tumors. Unexpectedly, genes considered exclusively non-neuronal also contained an RE1 motif and were expressed in neurons. This supports the model that REST binding is a critical determinant of neuronal phenotype.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Neuronas/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión/fisiología , Línea Celular , Perfilación de la Expresión Génica , Ratones , Neuronas/metabolismo , Proteínas Represoras/biosíntesis , Factores de Transcripción/biosíntesis
17.
Methods Mol Biol ; 1813: 391-414, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097882

RESUMEN

Free nicotinamide adenine dinucleotide (NAD+) serves as substrate for NAD+-consuming enzymes. As such, the local concentration of free NAD+ can influence enzymatic activities. Here we describe methods for using a fluorescent, genetically-encoded sensor to measure subcellular NAD+ concentrations. We also include a discussion of the limitations and potential applications for the current sensor. Presented in this chapter are (1) guidelines for calibrating instrumentation and experimental setups using a bead-based method, (2) instructions for incorporating required controls and properly performing ratiometric measurements in cells, and (3) descriptions of how to evaluate relative and quantitative fluctuations using appropriate statistical methods for ratio-of-ratio measurements.


Asunto(s)
Técnicas Biosensibles/métodos , Núcleo Celular/química , Monitoreo Fisiológico/métodos , NAD/aislamiento & purificación , Colorantes Fluorescentes/química , NAD/química
18.
Curr Opin Neurobiol ; 15(5): 507-13, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16150590

RESUMEN

In a similar fashion to transcription factors, non-coding RNAs can be essential regulators of gene expression. The largest class of non-coding RNAs is the microRNAs. These approximately 22 nt double-stranded RNA molecules can repress translation or target mRNA degradation. There has been a surge of research in the past year stimulated by the recent availability of specialized techniques, both in vitro and in silico, for predicting and characterizing microRNAs. The accumulating evidence suggests that microRNAs are ubiquitous regulators of gene expression during development. The combined actions of microRNAs and transcription factors are able to tune the expression of proteins on a global level in a manner that cannot be achieved by transcription factors alone.


Asunto(s)
Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , MicroARNs , Neuronas/fisiología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Humanos , Neuronas/citología
19.
Mol Cell Biol ; 22(11): 3832-41, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11997517

RESUMEN

CBP is a critical coactivator of transcription, but little is understood about the importance of its intrinsic acetyltransferase (AT) activity in gene activation in vivo. We show that the intrinsic AT function of CBP in Drosophila melanogaster (dCBP) is necessary to maintain a dCBP overexpression phenotype in the eye, for the in vivo activation of a specific target gene, wingless, and for the global acetylation of histone H4. These findings indicate that a point mutation which alters the intrinsic AT activity of CBP (only one of many CBP functions) has profound effects on CBP-induced gene activation in a physiologically intact transcription system. Furthermore, the effects of CBP AT activity are not limited to a few specific promoters, but rather CBT AT activity may play a role in regulating global histone acetylation throughout the developing organism.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Transactivadores/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteína de Unión a CREB , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fenotipo , Mutación Puntual , Homología de Secuencia de Aminoácido , Transactivadores/química , Transactivadores/genética , Activación Transcripcional , Proteína Wnt1
20.
Cell Rep ; 19(3): 505-520, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423315

RESUMEN

The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.


Asunto(s)
Adaptación Fisiológica/genética , Relojes Circadianos/genética , Dendritas/metabolismo , MicroARNs/metabolismo , Estaciones del Año , Adaptación Fisiológica/efectos de la radiación , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Relojes Circadianos/efectos de la radiación , Dendritas/efectos de la radiación , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de la radiación , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/efectos de la radiación , Luz , Masculino , Mesocricetus , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Neuronas/metabolismo , Fotoperiodo , Proteoma/metabolismo , Transducción de Señal/efectos de la radiación , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA