Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 142(12): 2094-108, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26081571

RESUMEN

The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.


Asunto(s)
Hepatocitos/citología , Hígado/embriología , Organogénesis/fisiología , Células Madre/citología , Animales , Diferenciación Celular , Linaje de la Célula , Humanos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Hepatopatías/patología , Ratones , Transducción de Señal
2.
Development ; 140(8): 1639-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23487308

RESUMEN

The GATA4 transcription factor is implicated in promoting cardiogenesis in combination with other factors, including TBX5, MEF2C and BAF60C. However, when expressed in embryonic stem cells (ESCs), GATA4 was shown to promote endoderm, not cardiac mesoderm. The capacity of related GATA factors to promote cardiogenesis is untested. We found that expression of the highly related gene, Gata5, very efficiently promotes cardiomyocyte fate from murine ESCs. Gata5 directs development of beating sheets of cells that express cardiac troponin T and show a full range of action potential morphologies that are responsive to pharmacological stimulation. We discovered that by removing serum from the culture conditions, GATA4 and GATA6 are each also able to efficiently promote cardiogenesis in ESC derivatives, with some distinctions. Thus, GATA factors can function in ESC derivatives upstream of other cardiac transcription factors to direct the efficient generation of cardiomyocytes.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Factores de Transcripción GATA/metabolismo , Corazón/embriología , Morfogénesis/fisiología , Miocitos Cardíacos/citología , Animales , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Inmunohistoquímica , Ratones , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Troponina T/metabolismo
3.
Nat Genet ; 37(5): 468-70, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15821733

RESUMEN

Roberts syndrome is an autosomal recessive disorder characterized by craniofacial anomalies, tetraphocomelia and loss of cohesion at heterochromatic regions of centromeres and the Y chromosome. We identified mutations in a new human gene, ESCO2, associated with Roberts syndrome in 15 kindreds. The ESCO2 protein product is a member of a conserved protein family that is required for the establishment of sister chromatid cohesion during S phase and has putative acetyltransferase activity.


Asunto(s)
Acetiltransferasas/genética , Cromátides/fisiología , Proteínas Cromosómicas no Histona/genética , Emparejamiento Cromosómico/fisiología , Labio Leporino/genética , Fisura del Paladar/genética , Ectromelia/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetiltransferasas/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Ectromelia/metabolismo , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Proteínas Nucleares/fisiología , Linaje , Proteínas de Saccharomyces cerevisiae/fisiología
4.
Protein Cell ; 14(8): 591-602, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029701

RESUMEN

While Mek1/2 and Gsk3ß inhibition ("2i") supports the maintenance of murine embryonic stem cells (ESCs) in a homogenous naïve state, prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential. Additionally, 2i fails to support derivation and culture of fully potent female ESCs. Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin (AlbuMAX) undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture. Mechanistically, lipids in AlbuMAX impact intracellular metabolism including nucleotide biosynthesis, lipid biogenesis, and TCA cycle intermediates, with enhanced expression of DNMT3s that prevent DNA hypomethylation. Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation, which also alleviates X chromosome loss in female ESCs. Importantly, both male and female "all-ESC" mice can be generated from de novo derived ESCs using AlbuMAX-based media. Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Masculino , Animales , Femenino , Ratones , Inestabilidad Genómica , Lípidos , ADN/metabolismo , Diferenciación Celular
5.
Nat Cell Biol ; 25(3): 381-389, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36918693

RESUMEN

COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.


Asunto(s)
COVID-19 , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Humanos , COVID-19/genética , Pulmón , Organoides , ARN , SARS-CoV-2 , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética
6.
iScience ; 25(4): 104153, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35434558

RESUMEN

The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.

7.
Hum Mol Genet ; 17(14): 2172-80, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18411254

RESUMEN

Roberts syndrome/SC phocomelia (RBS) is an autosomal recessive disorder with growth retardation, craniofacial abnormalities and limb reduction. Cellular alterations in RBS include lack of cohesion at the heterochromatic regions around centromeres and the long arm of the Y chromosome, reduced growth capacity, and hypersensitivity to DNA damaging agents. RBS is caused by mutations in ESCO2, which encodes a protein belonging to the highly conserved Eco1/Ctf7 family of acetyltransferases that is involved in regulating sister chromatid cohesion. We identified 10 new mutations expanding the number to 26 known ESCO2 mutations. We observed that these mutations result in complete or partial loss of the acetyltransferase domain except for the only missense mutation that occurs in this domain (c.1615T>G, W539G). To investigate the mechanism underlying RBS, we analyzed ESCO2 mutations for their effect on enzymatic activity and cellular phenotype. We found that ESCO2 W539G results in loss of autoacetyltransferase activity. The cellular phenotype produced by this mutation causes cohesion defects, proliferation capacity reduction and mitomycin C sensitivity equivalent to those produced by frameshift and nonsense mutations associated with decreased levels of mRNA and absence of protein. We found decreased proliferation capacity in RBS cell lines associated with cell death, but not with increased cell cycle duration, which could be a factor in the development of phocomelia and cleft palate in RBS. In summary, we provide the first evidence that loss of acetyltransferase activity contributes to the pathogenesis of RBS, underscoring the essential role of the enzymatic activity of the Eco1p family of proteins.


Asunto(s)
Acetiltransferasas/genética , Proteínas Cromosómicas no Histona/genética , Ectromelia/enzimología , Ectromelia/genética , Mutación , Síndrome de Pierre Robin/enzimología , Síndrome de Pierre Robin/genética , Acetiltransferasas/metabolismo , Ciclo Celular , Proliferación Celular , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Codón sin Sentido , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Fenotipo
8.
Cardiovasc Res ; 116(3): 658-670, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31173076

RESUMEN

AIMS: Human embryonic stem cells (hESCs) can be used to generate scalable numbers of cardiomyocytes (CMs) for studying cardiac biology, disease modelling, drug screens, and potentially for regenerative therapies. A fluorescence-based reporter line will significantly enhance our capacities to visualize the derivation, survival, and function of hESC-derived CMs. Our goal was to develop a reporter cell line for real-time monitoring of live hESC-derived CMs. METHODS AND RESULTS: We used CRISPR/Cas9 to knock a mCherry reporter gene into the MYH6 locus of hESC lines, H1 and H9, enabling real-time monitoring of the generation of CMs. MYH6:mCherry+ cells express atrial or ventricular markers and display a range of cardiomyocyte action potential morphologies. At 20 days of differentiation, MYH6:mCherry+ cells show features characteristic of human CMs and can be used successfully to monitor drug-induced cardiotoxicity and oleic acid-induced cardiac arrhythmia. CONCLUSION: We created two MYH6:mCherry hESC reporter lines and documented the application of these lines for disease modelling relevant to cardiomyocyte biology.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Diferenciación Celular , Doxorrubicina/toxicidad , Cardiopatías/inducido químicamente , Células Madre Embrionarias Humanas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Ácido Oléico/toxicidad , Potenciales de Acción/efectos de los fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Biomarcadores/metabolismo , Sistemas CRISPR-Cas , Miosinas Cardíacas/genética , Cardiotoxicidad , Línea Celular , Técnicas de Sustitución del Gen , Genes Reporteros , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Factores de Tiempo , Proteína Fluorescente Roja
9.
Nat Genet ; 51(6): 999-1010, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110351

RESUMEN

Human embryonic stem cells (ESCs) and human induced pluripotent stem cells hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five Jun N-terminal kinase (JNK)-JUN family genes as key barriers of DE differentiation. The JNK-JUN pathway does not act through directly inhibiting the DE enhancers. Instead, JUN co-occupies ESC enhancers with OCT4, NANOG, SMAD2 and SMAD3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2 and SMAD3 chromatin binding from ESC to DE enhancers. Therefore, the JNK-JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Endodermo/embriología , Endodermo/metabolismo , Genoma , Genómica , Sistema de Señalización de MAP Quinasas , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Genómica/métodos , Humanos , Células Madre Pluripotentes Inducidas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Reproducibilidad de los Resultados , Proteínas Smad
11.
Nat Med ; 23(7): 878-884, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28628110

RESUMEN

With the goal of modeling human disease of the large intestine, we sought to develop an effective protocol for deriving colonic organoids (COs) from differentiated human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs). Extensive gene and immunohistochemical profiling confirmed that the derived COs represent colon rather than small intestine, containing stem cells, transit-amplifying cells, and the expected spectrum of differentiated cells, including goblet and endocrine cells. We applied this strategy to iPSCs derived from patients with familial adenomatous polyposis (FAP-iPSCs) harboring germline mutations in the WNT-signaling-pathway-regulator gene encoding APC, and we generated COs that exhibit enhanced WNT activity and increased epithelial cell proliferation, which we used as a platform for drug testing. Two potential compounds, XAV939 and rapamycin, decreased proliferation in FAP-COs, but also affected cell proliferation in wild-type COs, which thus limits their therapeutic application. By contrast, we found that geneticin, a ribosome-binding antibiotic with translational 'read-through' activity, efficiently targeted abnormal WNT activity and restored normal proliferation specifically in APC-mutant FAP-COs. These studies provide an efficient strategy for deriving human COs, which can be used in disease modeling and drug discovery for colorectal disease.


Asunto(s)
Adenoma/genética , Poliposis Adenomatosa del Colon/genética , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Colon/efectos de los fármacos , Neoplasias Colorrectales/genética , Células Madre Embrionarias Humanas , Organoides/efectos de los fármacos , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Western Blotting , Diferenciación Celular , Colon/citología , Colon/metabolismo , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales , Células Enteroendocrinas/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Gentamicinas/farmacología , Mutación de Línea Germinal , Células Caliciformes/citología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas , Microscopía Confocal , Mutación , Organoides/citología , Organoides/metabolismo , Organoides/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Sirolimus/farmacología , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA