Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nucleic Acids Res ; 49(20): 11491-11511, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34648019

RESUMEN

The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.


Asunto(s)
Codón Iniciador , Factor 3 de Iniciación Eucariótica/química , Proteínas Fúngicas/química , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/ultraestructura , Microscopía por Crioelectrón , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Fúngicas/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Kluyveromyces , Simulación de Dinámica Molecular , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Imagen Individual de Molécula
2.
Nature ; 534(7606): 277-280, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279228

RESUMEN

In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a ß-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.


Asunto(s)
Aminoácidos/deficiencia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , GTP Pirofosfoquinasa/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , GTP Pirofosfoquinasa/antagonistas & inhibidores , GTP Pirofosfoquinasa/genética , GTP Pirofosfoquinasa/ultraestructura , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Fosforilación , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/ultraestructura , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Sistemas de Mensajero Secundario
3.
EMBO J ; 36(23): 3458-3482, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046335

RESUMEN

Kinetochores are dynamic cellular structures that connect chromosomes to microtubules. They form from multi-protein assemblies that are evolutionarily conserved between yeasts and humans. One of these assemblies-COMA-consists of subunits Ame1CENP-U, Ctf19CENP-P, Mcm21CENP-O and Okp1CENP-Q A description of COMA molecular organization has so far been missing. We defined the subunit topology of COMA, bound with inner kinetochore proteins Nkp1 and Nkp2, from the yeast Kluyveromyces lactis, with nanoflow electrospray ionization mass spectrometry, and mapped intermolecular contacts with hydrogen-deuterium exchange coupled to mass spectrometry. Our data suggest that the essential Okp1 subunit is a multi-segmented nexus with distinct binding sites for Ame1, Nkp1-Nkp2 and Ctf19-Mcm21. Our crystal structure of the Ctf19-Mcm21 RWD domains bound with Okp1 shows the molecular contacts of this important inner kinetochore joint. The Ctf19-Mcm21 binding motif in Okp1 configures a branch of mitotic inner kinetochores, by tethering Ctf19-Mcm21 and Chl4CENP-N-Iml3CENP-L Absence of this motif results in dependence on the mitotic checkpoint for viability.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Secuencia de Aminoácidos , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Medición de Intercambio de Deuterio , Proteínas Fúngicas/genética , Humanos , Kluyveromyces/citología , Kluyveromyces/genética , Kluyveromyces/metabolismo , Mitosis , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Ionización de Electrospray
4.
Mol Cell ; 51(1): 57-67, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23791785

RESUMEN

Class I histone deacetylases (HDAC1, HDAC2, and HDAC3) are recruited by cognate corepressor proteins into specific transcriptional repression complexes that target HDAC activity to chromatin resulting in chromatin condensation and transcriptional silencing. We previously reported the structure of HDAC3 in complex with the SMRT corepressor. This structure revealed the presence of inositol-tetraphosphate [Ins(1,4,5,6)P4] at the interface of the two proteins. It was previously unclear whether the role of Ins(1,4,5,6)P4 is to act as a structural cofactor or a regulator of HDAC3 activity. Here we report the structure of HDAC1 in complex with MTA1 from the NuRD complex. The ELM2-SANT domains from MTA1 wrap completely around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is ideally positioned to recruit nucleosomes to the active site of the enzyme. Functional assays of both the HDAC1 and HDAC3 complexes reveal that Ins(1,4,5,6)P4 is a bona fide conserved regulator of class I HDAC complexes.


Asunto(s)
Histona Desacetilasa 1/química , Histona Desacetilasas/química , Fosfatos de Inositol/fisiología , Proteínas Represoras/química , Secuencia de Aminoácidos , Dimerización , Células HEK293 , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/fisiología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Humanos , Fosfatos de Inositol/química , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Especificidad por Sustrato , Transactivadores
5.
EMBO J ; 33(14): 1514-26, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24872509

RESUMEN

The conserved eukaryotic Pan2-Pan3 deadenylation complex shortens cytoplasmic mRNA 3' polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2-Pan3 complex.


Asunto(s)
Chaetomium/química , Exorribonucleasas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Cromatografía de Afinidad , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Exorribonucleasas/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Sefarosa , Análisis de Secuencia de ADN
7.
Biochim Biophys Acta ; 1850(1): 150-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450178

RESUMEN

BACKGROUND: The ribosomal stalk composed of P-proteins constitutes a structure on the large ribosomal particle responsible for recruitment of translation factors and stimulation of factor-dependent GTP hydrolysis during translation. The main components of the stalk are P-proteins, which form a pentamer. Despite the conserved basic function of the stalk, the P-proteins do not form a uniform entity, displaying heterogeneity in the primary structure across the eukaryotic lineage. The P-proteins from protozoan parasites are among the most evolutionarily divergent stalk proteins. METHODS: We have assembled P-stalk complex of Plasmodium falciparum in vivo in bacterial system using tricistronic expression cassette and provided its characteristics by biochemical and biophysical methods. RESULTS: All three individual P-proteins, namely uL10/P0, P1 and P2, are indispensable for acquisition of a stable structure of the P stalk complex and the pentameric uL10/P0-(P1-P2)2form represents the most favorable architecture for parasite P-proteins. CONCLUSION: The formation of P. falciparum P-stalk is driven by trilateral interaction between individual elements which represents unique mode of assembling, without stable P1-P2 heterodimeric intermediate. GENERAL SIGNIFICANCE: On the basis of our mass-spectrometry analysis supported by the bacterial two-hybrid assay and biophysical analyses, a unique pathway of the parasite stalk assembling has been proposed. We suggest that the absence of P1/P2 heterodimer, and the formation of a stable pentamer in the presence of all three proteins, indicate a one-step formation to be the main pathway for the vital ribosomal stalk assembly, whereas the P2 homo-oligomer may represent an off-pathway product with physiologically important nonribosomal role.


Asunto(s)
Fosfoproteínas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Plasmodium falciparum/genética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
8.
FASEB J ; 28(5): 2225-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24532666

RESUMEN

Eukaryotic initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor for eIF2 and a critical regulator of protein synthesis, (e.g., as part of the integrated stress response). Certain mutations in the EIF2B genes cause leukoencephalopathy with vanishing white matter (VWM), an often serious neurological disorder. Comprising 5 subunits, α-ε (eIF2Bε being the catalytic one), eIF2B has always been considered an αßγδε heteropentamer. We have analyzed the subunit interactions within mammalian eIF2B by using a combination of mass spectrometry and in vivo studies of overexpressed complexes to gain further insight into the subunit arrangement of the complex. Our data reveal that eIF2B is actually decameric, a dimer of eIF2B(ßγδε) tetramers stabilized by 2 copies of eIF2Bα. We also demonstrate a pivotal role for eIF2Bδ in the formation of eIF2B(ßγδε) tetramers. eIF2B(αßγδε)2 decamers show greater binding to eIF2 than to eIF2B(ßγδε) tetramers, which may underlie the increased activity of the former. We examined the levels of eIF2B subunits in a panel of different mouse tissues and identified different levels of eIF2B subunits, particularly eIF2Bα, which implies heterogeneity in the cellular proportions of eIF2B(αßγδε) and eIF2B(ßγδε) complexes, with important implications for the regulation of translation in individual cell types.


Asunto(s)
Factor 2B Eucariótico de Iniciación/química , Regulación de la Expresión Génica , Secuencia de Aminoácidos , Animales , Catálisis , Citoplasma/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteómica , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
9.
Nat Chem Biol ; 8(12): 960-962, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23103944

RESUMEN

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/metabolismo , Células Procariotas/metabolismo , Ribosomas/metabolismo , Animales , Arginina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Dioxigenasas , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Histidina/metabolismo , Histona Demetilasas , Humanos , Hidroxilación , Espectroscopía de Resonancia Magnética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oxigenasas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo
10.
Nat Struct Mol Biol ; 31(3): 455-464, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287194

RESUMEN

Eukaryotic translation initiation involves recruitment of the 43S pre-initiation complex to the 5' end of mRNA by the cap-binding complex eIF4F, forming the 48S translation initiation complex (48S), which then scans along the mRNA until the start codon is recognized. We have previously shown that eIF4F binds near the mRNA exit channel of the 43S, leaving open the question of how mRNA secondary structure is removed as it enters the mRNA channel on the other side of the 40S subunit. Here we report the structure of a human 48S that shows that, in addition to the eIF4A that is part of eIF4F, there is a second eIF4A helicase bound at the mRNA entry site, which could unwind RNA secondary structures as they enter the 48S. The structure also reveals conserved interactions between eIF4F and the 43S, probaby explaining how eIF4F can promote mRNA recruitment in all eukaryotes.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Iniciación de la Cadena Peptídica Traduccional , Humanos , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , ARN Mensajero/metabolismo , Codón Iniciador/metabolismo , Ribosomas/metabolismo , ADN Helicasas/metabolismo , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo
11.
Nat Commun ; 15(1): 6633, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117603

RESUMEN

Translation is regulated mainly in the initiation step, and its dysregulation is implicated in many human diseases. Several proteins have been found to regulate translational initiation, including Pdcd4 (programmed cell death gene 4). Pdcd4 is a tumor suppressor protein that prevents cell growth, invasion, and metastasis. It is downregulated in most tumor cells, while global translation in the cell is upregulated. To understand the mechanisms underlying translational control by Pdcd4, we used single-particle cryo-electron microscopy to determine the structure of human Pdcd4 bound to 40S small ribosomal subunit, including Pdcd4-40S and Pdcd4-40S-eIF4A-eIF3-eIF1 complexes. The structures reveal the binding site of Pdcd4 at the mRNA entry site in the 40S, where the C-terminal domain (CTD) interacts with eIF4A at the mRNA entry site, while the N-terminal domain (NTD) is inserted into the mRNA channel and decoding site. The structures, together with quantitative binding and in vitro translation assays, shed light on the critical role of the NTD for the recruitment of Pdcd4 to the ribosomal complex and suggest a model whereby Pdcd4 blocks the eIF4F-independent role of eIF4A during recruitment and scanning of the 5' UTR of mRNA.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Microscopía por Crioelectrón , Unión Proteica , ARN Mensajero , Proteínas de Unión al ARN , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Sitios de Unión , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Modelos Moleculares
12.
Mol Cell Proteomics ; 9(8): 1774-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20467040

RESUMEN

The ribosomal stalk complex plays a crucial role in delivering translation factors to the catalytic site of the ribosome. It has a very similar architecture in all cells, although the protein components in bacteria are unrelated to those in archaea and eukaryotes. Here we used mass spectrometry to investigate ribosomal stalk complexes from bacteria, eukaryotes, and archaea in situ on the ribosome. Specifically we targeted ribosomes with different optimal growth temperatures. Our results showed that for the mesophilic bacterial ribosomes we investigated the stalk complexes are exclusively pentameric or entirely heptameric in the case of thermophilic bacteria, whereas we observed only pentameric stalk complexes in eukaryotic species. We also found the surprising result that for mesophilic archaea, Methanococcus vannielii, Methanococcus maripaludis, and Methanosarcina barkeri, both pentameric and heptameric stoichiometries are present simultaneously within a population of ribosomes. Moreover the ratio of pentameric to heptameric stalk complexes changed during the course of cell growth. We consider these differences in stoichiometry within ribosomal stalk complexes in the context of convergent evolution.


Asunto(s)
Filogenia , Ribosomas/química , Ribosomas/genética , Espectrometría de Masas en Tándem , Animales , Archaea/metabolismo , Eucariontes , Peso Molecular , Proteínas Ribosómicas/química , Temperatura , Thermus thermophilus/crecimiento & desarrollo , Thermus thermophilus/metabolismo
13.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492227

RESUMEN

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Complejos Multiproteicos/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Reguladoras de la Apoptosis/química , Sitios de Unión , Proteínas Portadoras/química , Cromatografía en Gel , ADN Helicasas/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína
14.
Biochemistry ; 49(5): 924-33, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20058904

RESUMEN

The landing platform for the translational GTPases is located on the 60S ribosomal subunit and is referred to as a GTPase-associated center. The most distinctive feature of this center is an oligomeric complex, the stalk, responsible for the recruitment of translation factors and stimulation of translation factor-dependent GTP hydrolysis. In eukaryotes, the stalk has been investigated in vitro and in vivo, but most information available concerns its individual components only. In the present study, we provide an insight into the biophysical nature of the native stalk isolated from the yeast Saccharomyces cerevisiae. Using fluorescence, circular dichroism, and mass spectrometry analyses, we were able to characterize the natively formed yeast stalk, casting new light on the oligomeric properties of the complex and its quaternary topology, showing that folding and assembly are coupled processes. The pentameric stalk is an exceptionally stable structure with the protein core composed of P0, P1A, and P2B proteins and less tightly bound P1B and P2A capable of dissociating from the stalk core. We obtained also the whole picture of the posttranslational modifications at the logarithmic phase of yeast growth, using mass spectrometry approach, where P proteins are phosphorylated at a single serine residue, P0 may accept two phosphate groups, and P1A none. Additionally, only P1B undergoes N-terminal acetylation after prior methionine removal.


Asunto(s)
Eucariontes/química , Ribosomas/química , Fenómenos Biofísicos/genética , Proliferación Celular , Eucariontes/genética , Eucariontes/fisiología , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Ingeniería Genética , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Science ; 369(6508): 1220-1227, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32883864

RESUMEN

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5' end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo-electron microscopy to determine the structure of a reconstituted human 48S The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being "pulled" through the 40S subunit during scanning.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 4F Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Adenosina Trifosfato/química , Codón Iniciador , Microscopía por Crioelectrón , Humanos , Hidrólisis , ARN Mensajero/química
16.
Science ; 363(6428): 740-744, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765567

RESUMEN

During trans-translation, transfer-messenger RNA (tmRNA) and small protein B (SmpB) together rescue ribosomes stalled on a truncated mRNA and tag the nascent polypeptide for degradation. We used cryo-electron microscopy to determine the structures of three key states of the tmRNA-SmpB-ribosome complex during trans translation at resolutions of 3.7 to 4.4 angstroms. The results show how tmRNA and SmpB act specifically on stalled ribosomes and how the circularized complex moves through the ribosome, enabling translation to switch from the old defective message to the reading frame on tmRNA.


Asunto(s)
Biosíntesis de Proteínas , ARN Bacteriano/química , Proteínas de Unión al ARN/química , Ribosomas/química , Microscopía por Crioelectrón , Escherichia coli , Movimiento (Física) , Thermus thermophilus
17.
Nat Commun ; 10(1): 2640, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201334

RESUMEN

One of the responses to stress by eukaryotic cells is the down-regulation of protein synthesis by phosphorylation of translation initiation factor eIF2. Phosphorylation results in low availability of the eIF2 ternary complex (eIF2-GTP-tRNAi) by affecting the interaction of eIF2 with its GTP-GDP exchange factor eIF2B. We have determined the cryo-EM structure of yeast eIF2B in complex with phosphorylated eIF2 at an overall resolution of 4.2 Å. Two eIF2 molecules bind opposite sides of an eIF2B hetero-decamer through eIF2α-D1, which contains the phosphorylated Ser51. eIF2α-D1 is mainly inserted between the N-terminal helix bundle domains of δ and α subunits of eIF2B. Phosphorylation of Ser51 enhances binding to eIF2B through direct interactions of phosphate groups with residues in eIF2Bα and indirectly by inducing contacts of eIF2α helix 58-63 with eIF2Bδ leading to a competition with Met-tRNAi.


Asunto(s)
Factor 2B Eucariótico de Iniciación/ultraestructura , Factor 2 Eucariótico de Iniciación/ultraestructura , Biosíntesis de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Fosforilación/fisiología , Unión Proteica/fisiología , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
18.
J Biochem ; 143(2): 169-77, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17984123

RESUMEN

The ribosome has a morphologically distinct structural feature called the stalk, recognized as a vital element for its function. The ribosomal P proteins constitute the main part of the eukaryotic ribosomal stalk, forming a pentameric structure P0-(P1-P2)(2). The group of P1/P2 proteins in eukaryotes is very diverse, and in spite of functional and structural similarities they do not fully complement one another, probably constituting an adaptive feature of the ribosome from a particular species to diverse environmental conditions. The functional differences among the P1/P2 proteins were analysed in vivo several times; however, a thorough molecular characterization was only done for the yeast P1/P2 proteins. Here, we report a biophysical analysis of the human P1 and P2 proteins, applying mass spectrometry, CD and fluorescence spectroscopy, cross-linking and size exclusion chromatography. The human P1/P2 proteins form stable heterodimer, as it is the case for P1/P2 from yeast. However, unlike the yeast complex P1A-P2B, the human P1-P2 dimer showed a three-state transition mechanism, suggesting that an intermediate species may exist in solution.


Asunto(s)
Proteínas Ribosómicas/química , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Humanos , Espectrometría de Masas , Conformación Proteica , Espectrometría de Fluorescencia
19.
Elife ; 72018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30475211

RESUMEN

In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.


Asunto(s)
Factor 1 Eucariótico de Iniciación/genética , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Ribosomas/genética , Sitios de Unión , Codón Iniciador/genética , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Factor 5A Eucariótico de Iniciación de Traducción
20.
Science ; 358(6366): 1056-1059, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29074584

RESUMEN

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.


Asunto(s)
Procesamiento de Término de ARN 3' , ARN Polimerasa II/química , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Factores de Escisión y Poliadenilación de ARNm/química , Microscopía por Crioelectrón , Polinucleotido Adenililtransferasa/metabolismo , Conformación Proteica , ARN Polimerasa II/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Escisión y Poliadenilación de ARNm/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA