RESUMEN
Skull stripping is a fundamental preprocessing step in modern neuroimaging analyses that consists of removing non-brain voxels from structural images. When performed entirely manually, this laborious step can be rate-limiting for analyses, with the potential to influence the population size chosen. This emphasizes the need for a fully- or semi-automated masking procedure to decrease man-hours without an associated decline in accuracy. These algorithms are plentiful in human neuroimaging but are relatively lacking for the plethora of animal species used in research. Unfortunately, software designed for humans cannot be easily transformed for animal use due to the high amount of tailoring required to accurately account for the considerable degree of variation within the highly folded human cortex. As most animals have a relatively less complex cerebral morphology, intersubject variability is consequently decreased, presenting the possibility to simply warp the brain mask of a template image into subject space for the purpose of skull stripping. This study presents the use of the Cat Automated Registration-based Skull Stripper (CARSS) tool on feline structural images. Validation metrics revealed that this method was able to perform on par with manual raters on >90 % of scans tested, and that its consistency across multiple runs was superior to that of masking performed by two independent raters. Additionally, CARSS outperformed three well-known skull stripping programs on the validation dataset. Despite a handful of manual interventions required, the presented tool reduced the man-hours required to skull strip 60 feline images over tenfold when compared to a fully manual approach, proving to be invaluable for feline neuroimaging studies, particularly those with large population sizes.
Asunto(s)
Neuroimagen , Cráneo , Gatos , Animales , Cráneo/diagnóstico por imagen , Cráneo/anatomía & histología , Neuroimagen/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Masculino , Reproducibilidad de los ResultadosRESUMEN
In response to sensory deprivation, the brain adapts according to contemporary demands to efficiently navigate a modified perceptual environment. This reorganization may result in improved processing of the remaining senses-a phenomenon referred to as compensatory crossmodal plasticity. One approach to explore this neuroplasticity is to consider the macrostructural changes in neural tissue that mirror this functional optimization. The current study is the first of its kind to measure MRI-derived gray matter (GM) volumes of control felines (n=30), while additionally identifying volumetric differences in response to perinatal deafness (30 ototoxically-deafened cats). To accomplish this purpose, regional and morphometric methods were performed in parallel. The regional analysis evaluated volumetric alterations of global GM, as well as the volumes of 146 regions of interest (ROIs) and 12 functional subgroupings of these ROIs. Results revealed whole-brain GM preservation; however, somatosensory and visual cortices exhibited an overall increase in volume. On a smaller scale, this analysis uncovered two auditory ROIs (second auditory cortex, A2, and ventral auditory field, VAF) that decreased in volume alongside two visual regions (anteromedial lateral suprasylvian area, AMLS and splenial visual area, SVA) that increased-all localized within the right hemisphere. Comparatively, the findings of tensor-based morphometry (TBM) generally aligned with those of the ROI-based method, as this voxel-wise approach demonstrated clusters of expansion coincident with visual- and somatosensory-related loci; although, it failed to detect any GM reductions following deafness. As distinct differences were identified in each analysis, the current study highlights the importance of employing multiple methods when exploring MRI volumetry. Overall, this study proposes that volumetric alterations within sensory loci allude to a redistribution of cortical space arising from modified perceptual demands following auditory deprivation.
Asunto(s)
Corteza Cerebral , Sordera , Sustancia Gris , Imagen por Resonancia Magnética , Plasticidad Neuronal , Animales , Gatos , Plasticidad Neuronal/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Sordera/diagnóstico por imagen , Sordera/fisiopatología , Sordera/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , MasculinoRESUMEN
Following sensory deprivation, areas and networks in the brain may adapt and reorganize to compensate for the loss of input. These adaptations are manifestations of compensatory crossmodal plasticity, which has been documented in both human and animal models of deafness-including the domestic cat. Although there are abundant examples of structural plasticity in deaf felines from retrograde tracer-based studies, there is a lack of diffusion-based knowledge involving this model compared to the current breadth of human research. The purpose of this study was to explore white matter structural adaptations in the perinatally-deafened cat via tractography, increasing the methodological overlap between species. Plasticity was examined by identifying unique group connections and assessing altered connectional strength throughout the entirety of the brain. Results revealed a largely preserved connectome containing a limited number of group-specific or altered connections focused within and between sensory networks, which is generally corroborated by deaf feline anatomical tracer literature. Furthermore, five hubs of cortical plasticity and altered communication following perinatal deafness were observed. The limited differences found in the present study suggest that deafness-induced crossmodal plasticity is largely built upon intrinsic structural connections, with limited remodeling of underlying white matter.
Asunto(s)
Conectoma , Sordera , Humanos , Animales , Gatos , EncéfaloRESUMEN
In the absence of hearing during development, the brain adapts and repurposes what was destined to become auditory cortex. As cortical thickness is commonly used as a proxy to identify cortical regions that have undergone plastic changes, the purpose of this investigation was to compare cortical thickness patterns between hearing and deaf cats. In this study, normal hearing (n = 29) and deaf (n = 26) cats were scanned to examine cortical thickness in hearing controls, as well as differential changes in thickness as a consequence of deafness. In hearing cats, a gradient in cortical thickness was identified across auditory cortex in which it is thinner in more dorsal regions and thicker in more ventral regions. Compared with hearing controls, differential thickening and thinning was observed in specific regions of deaf auditory cortex. More dorsal regions were found to be bilaterally thicker in the deaf group, while more ventral regions in the left hemisphere were thinner. The location and nature of these changes creates a gradient along the dorsoventral axis, wherein dorsal auditory cortical fields are thicker, whereas more ventral fields are thinner in deaf animals compared with hearing controls.
Asunto(s)
Corteza Auditiva , Sordera , Animales , Corteza Auditiva/diagnóstico por imagen , Sordera/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Audición , Grosor de la Corteza Cerebral , Plasticidad NeuronalRESUMEN
It has been long known that prolonging stimulus duration may increase the perceived brightness of a visual stimulus. The interaction between intensity and duration generally follows a rule, such as that described in Bloch's law. This visual temporal integration relationship has been identified in human subjects and in non-human primates. However, although auditory temporal integration has been extensively studied in the cat, visual temporal integration has not. Therefore, the goal of this study was to examine visual temporal integration in the cat. We trained five cats to respond when a brief luminance change was detected in a fixation dot. After training, we measured the success rate of detecting the luminance change with varying durations at threshold, subthreshold, and suprathreshold luminance levels. Psychometric functions showed that prolonging stimulus duration improved task performance, more noticeably for stimuli below 100 ms than beyond. Most psychometric functions were better fit to an exponential model than to a linear model. The gradually saturated performance observed here, as in previous studies, can be explained by the "leaky integrator" hypothesis, that is, temporal integration is only valid below a critical duration. Overall, we developed a task whereby visual temporal integration was successfully demonstrated in the cat. The effect of stimulus duration on detection success rate displayed a pattern generally consistent with previous human and non-human primate findings on visual temporal integration.