Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Clin Pharmacol ; 63(6): 732-741, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36786053

RESUMEN

JNJ-73763989 is comprised of 2 short interfering RNAs (siRNAs), JNJ-73763976 and JNJ-73763924, that target hepatitis B virus (HBV) mRNAs for degradation, thereby inhibiting HBV replication. JNJ-56136379 is a capsid assembly modulator that inhibits HBV replication by inducing the formation of empty capsids (CAM-E). In 2 phase 1, open-label, non-randomized, single-center studies, the single-dose pharmacokinetics, safety, and tolerability of JNJ-73763989 or JNJ-56136379 were assessed in participants with moderate hepatic impairment (Child-Pugh Class B) versus participants with normal liver function. Participants in both studies received a single subcutaneous dose of JNJ-73763989 200 mg or oral JNJ-56136379 250 mg, followed by an evaluation of plasma pharmacokinetic parameters and safety assessments. Plasma exposure to JNJ-73763976, JNJ-73763924, and JNJ-56136379 was 1.3- to 1.4-, 1.8- to 2.2-, and 1.1- to 1.3-fold higher in participants with moderate hepatic impairment versus participants with normal liver function; however, these increases were not considered clinically relevant. Both drugs were well tolerated and safe, with 7 (21.9%) participants experiencing 1 or more treatment-emergent adverse events, 3 of which were related to JNJ-56136379. Overall, the plasma exposures of JNJ-73763989 and JNJ-56136379 were higher in participants with moderate hepatic impairment, but both were well tolerated. Further studies are needed to evaluate the effect of hepatic impairment under multiple-dose administration.


Asunto(s)
Antivirales , Hepatopatías , Humanos , Antivirales/farmacocinética , Compuestos Orgánicos , Área Bajo la Curva
2.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1107-1118, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34273250

RESUMEN

Erdafitinib is a potent oral pan-fibroblast growth factor receptor inhibitor being developed as oncology drug for patients with alterations in the fibroblast growth factor receptor pathway. Erdafitinib binds preferentially to α1-acid glycoprotein (AGP) and is primarily metabolized by cytochrome P450 (CYP) 2C9 and 3A4. This article describes a physiologically based pharmacokinetic (PBPK) model for erdafitinib to assess the drug-drug interaction (DDI) potential of CYP3A4 and CYP2C9 inhibitors and CYP3A4/CYP2C9 inducers on erdafitinib pharmacokinetics (PK) in patients with cancer exhibiting higher AGP levels and in populations with different CYP2C9 genotypes. Erdafitinib's DDI potential as a perpetrator for transporter inhibition and for time-dependent inhibition and/or induction of CYP3A was also evaluated. The PBPK model incorporated input parameters from various in vitro and clinical PK studies, and the model was verified using a clinical DDI study with itraconazole and fluconazole. Erdafitinib clearance in the PBPK model consisted of multiple pathways (CYP2C9/3A4, renal, intestinal; additional hepatic clearance), making the compound less susceptible to DDIs. In poor-metabolizing CYP2C9 populations carrying the CYP2C9*3/*3 genotype, simulations shown clinically relevant increase in erdafitinib plasma concentrations. Simulated luminal and enterocyte concentration showed potential risk of P-glycoprotein inhibition with erdafitinib in the first 5 h after dosing, and simulations showed this interaction can be avoided by staggering erdafitinib and digoxin dosing. Other than a simulated ~ 60% exposure reduction with strong CYP3A/2C inducers such as rifampicin, other DDI liabilities were minimal and considered not clinically relevant.


Asunto(s)
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Pirazoles/farmacocinética , Quinoxalinas/farmacocinética , Antineoplásicos/farmacocinética , Citocromo P-450 CYP2C9/efectos de los fármacos , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/efectos de los fármacos , Citocromo P-450 CYP3A/genética , Inductores de las Enzimas del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Interacciones Farmacológicas , Genotipo , Humanos , Orosomucoide/metabolismo
3.
Drug Metab Dispos ; 35(4): 566-75, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17220243

RESUMEN

The in vivo metabolism and excretion of RWJ-333369 [1,2-ethanediol, 1-(2-chlorophenyl)-, 2-carbamate, (S)-], a novel neuromodulator, were investigated in mice, rats, rabbits, and dogs after oral administration of (14)C-RWJ-333369. Plasma, urine, and feces samples were collected, assayed for radioactivity, and profiled for metabolites. In almost all species, the administered radioactive dose was predominantly excreted in urine (>85%) with less than 10% in feces. Excretion of radioactivity was rapid and nearly complete at 96 h after dosing in all species. Unchanged drug excreted in urine was minimal (<2.3% of the administered dose) in all species. The primary metabolic pathways were O-glucuronidation (rabbit > mouse > dog > rat) of RWJ-333369 and hydrolysis of the carbamate ester followed by oxidation to 2-chloromandelic acid. The latter metabolite was subsequently metabolized in parallel to 2-chlorophenylglycine and 2-chlorobenzoic acid (combined hydrolytic and oxidative pathways: rat > dog > mouse > rabbit). Other metabolic pathways present in all species included chiral inversion in combination with O-glucuronidation and sulfate conjugation (directly and/or following hydroxylation of RWJ-333369). Species-specific pathways, including N-acetylation of 2-chlorophenylglycine (mice, rats, and dogs) and arene oxidation followed by glutathione conjugation of RWJ-333369 (mice and rats), were more predominant in rodents than in other species. Consistent with human metabolism, multiple metabolic pathways and renal excretion were mainly involved in the elimination of RWJ-333369 and its metabolites in animal species. Unchanged drug was the major plasma circulating drug-related substance in the preclinical species and humans.


Asunto(s)
Anticonvulsivantes/farmacocinética , Carbamatos/farmacocinética , Administración Oral , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/sangre , Anticonvulsivantes/orina , Biotransformación , Carbamatos/administración & dosificación , Carbamatos/sangre , Carbamatos/orina , Radioisótopos de Carbono , Cromatografía Líquida de Alta Presión , Perros , Heces/química , Femenino , Glucurónidos/metabolismo , Hidrólisis , Riñón/metabolismo , Masculino , Ratones , Estructura Molecular , Oxidación-Reducción , Conejos , Ratas , Ratas Sprague-Dawley , Conteo por Cintilación , Ésteres del Ácido Sulfúrico/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA