RESUMEN
Lung transplantation is the only treatment for end-stage lung disease; however, donor organ shortage and intense immunosuppression limit its broad clinical impact. Bioengineering of lungs with patient-derived cells could overcome these problems. We created bioartificial lungs by seeding human-derived cells onto porcine lung matrices and performed orthotopic transplantation to assess feasibility and in vivo function. Porcine decellularized lung scaffolds were seeded with human airway epithelial cells and human umbilical vein endothelial cells. Following in vitro culture, the bioartificial lungs were orthotopically transplanted into porcine recipients with planned 1-day survival (nâ¯=â¯3). Lungs were assessed with histology and in vivo function. Orthotopic transplantation of cadaveric lungs was performed as control. Engraftment of endothelial and epithelial cells in the grafts were histologically demonstrated. Technically successful orthotopic anastomoses of the vasculatures and airway were achieved in all animals. Perfusion and ventilation of the lung grafts were confirmed intraoperatively. The gas exchange function was evident immediately after transplantation; PO2 gradient between pulmonary artery and vein were 178 ± 153 mm Hg in the bioartificial lung group and 183 ± 117 mm Hg in the control group. At time of evaluation 24 hours after reperfusion, the pulmonary arteries were found to be occluded with thrombus in all bioartificial lungs. Engineering and orthotopic transplantation of bioartificial lungs with human cells were technically feasible in a porcine model. Early gas exchange function was evident. Further progress in optimizing recellularization and maturation of the grafts will be necessary for sustained perfusability and function.
Asunto(s)
Trasplante de Pulmón , Andamios del Tejido , Animales , Células Endoteliales , Estudios de Factibilidad , Humanos , Pulmón/cirugía , Porcinos , Resultado del TratamientoRESUMEN
IMPACT STATEMENT: This work presents methods for ex vivo lung recellularization and biomimetic culture in a high-throughput and consistent manner. These methods allow for the testing of multiple variables, all of which are simultaneously controlled and monitored on a single fully automated pump system, and subsequent assessment of both epithelial and endothelial repair and tissue regeneration. This system provides a controlled environment for tissue repair, wherein key variables can be modified, monitored, reproduced, and optimized to advance the goal of ex vivo tissue regeneration based on native organ scaffolds.
Asunto(s)
Reactores Biológicos , Células Endoteliales/citología , Células Epiteliales/citología , Pulmón/citología , Regeneración , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Automatización , Proliferación Celular , Pulmón/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-DawleyRESUMEN
Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.