Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioelectromagnetics ; 43(2): 119-143, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35077582

RESUMEN

In this paper, slices of organs from various organisms (animals, plants, fungi) were investigated by using atomic force microscopy and magnetic force microscopy to identify common features of localization of both biogenic and nonbiogenic magnetic nanoparticles. It was revealed that both biogenic and nonbiogenic magnetic nanoparticles are localized in the form of chains of separate nanoparticles or chains of conglomerates of nanoparticles in the walls of the capillaries of animals and the walls of the conducting tissue of plants and fungi. Both biogenic and nonbiogenic magnetic nanoparticles are embedded as a part of the transport system in multicellular organisms. In connection with this, a new idea of the function of biogenic magnetic nanoparticles is discussed, that the chains of biogenic magnetic nanoparticles and chains of conglomerates of biogenic magnetic nanoparticles represent ferrimagnetic organelles of a specific purpose. Besides, magnetic dipole-dipole interaction of biogenic magnetic nanoparticles with magnetically labeled drugs or contrast agents for magnetic resonance imaging should be considered when designing the drug delivery and other medical systems because biogenic magnetic nanoparticles in capillary walls will serve as the trapping centers for the artificial magnetic nanoparticles. The aggregates of both artificial and biogenic magnetic nanoparticles can be formed, contributing to the risk of vascular occlusion. Bioelectromagnetics. 43:119-143, 2022. © 2021 Bioelectromagnetics Society.


Asunto(s)
Nanopartículas de Magnetita , Animales
2.
Nanoscale Adv ; 6(4): 1163-1182, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38356636

RESUMEN

Calcium signaling plays a crucial role in various physiological processes, including muscle contraction, cell division, and neurotransmitter release. Dysregulation of calcium levels and signaling has been linked to a range of pathological conditions such as neurodegenerative disorders, cardiovascular disease, and cancer. Here, we propose a theoretical model that predicts the modulation of calcium ion channel activity and calcium signaling in the endothelium through the application of either a time-varying or static gradient magnetic field (MF). This modulation is achieved by exerting magnetic forces or torques on either biogenic or non-biogenic magnetic nanoparticles that are bound to endothelial cell membranes. Since calcium signaling in endothelial cells induces neuromodulation and influences blood flow control, treatment with a magnetic field shows promise for regulating neurovascular coupling and treating vascular dysfunctions associated with aging and neurodegenerative disorders. Furthermore, magnetic treatment can enable control over the decoding of Ca signals, ultimately impacting protein synthesis. The ability to modulate calcium wave frequencies using MFs and the MF-controlled decoding of Ca signaling present promising avenues for treating diseases characterized by calcium dysregulation.

3.
Bioelectrochemistry ; 151: 108390, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36746089

RESUMEN

The interaction mechanisms between magnetic fields (MFs) and living systems, which remained hidden for more than a hundred years, continue to attract the attention of researchers from various disciplines: physics, biology, medicine, and life sciences. Revealing these mechanisms at the cellular level would allow to understand complex cell systems and could help to explain and predict cell responses to MFs, intervene in organisms' reactions to MFs of different strengths, directions, and spatial distributions. We suggest several new physical mechanisms of the MF impacts on endothelial and cancer cells by the MF interaction with chains of biogenic and non-biogenic magnetic nanoparticles on cell membranes. The revealed mechanisms can play a hitherto unexpected role in creating physiological responses of organisms to externally applied MFs. We have also a set of theoretical models that can predict how cells will individually and collectively respond to a MF exposure. The physiological sequences of the MF - cell interactions for organisms in health and disease are discussed. The described effects and their underlying mechanisms are general and should take place in a large family of biological effects of MFs. The results are of great importance for further developing novel approaches in cell biology, cell therapy and medicine.


Asunto(s)
Nanopartículas de Magnetita , Campos Magnéticos , Membrana Celular
4.
Cells ; 12(2)2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36672251

RESUMEN

Cell-cycle progression is regulated by numerous intricate endogenous mechanisms, among which intracellular forces and protein motors are central players. Although it seems unlikely that it is possible to speed up this molecular machinery by applying tiny external forces to the cell, we show that magnetic forcing of magnetosensitive bacteria reduces the duration of the mitotic phase. In such bacteria, the coupling of the cell cycle to the splitting of chains of biogenic magnetic nanoparticles (BMNs) provides a biological realization of such forcing. Using a static gradient magnetic field of a special spatial configuration, in probiotic bacteria E. coli Nissle 1917, we shortened the duration of the mitotic phase and thereby accelerated cell division. Thus, focused magnetic gradient forces exerted on the BMN chains allowed us to intervene in the processes of division and growth of bacteria. The proposed magnetic-based cell division regulation strategy can improve the efficiency of microbial cell factories and medical applications of magnetosensitive bacteria.


Asunto(s)
Escherichia coli , Campos Magnéticos , Escherichia coli/metabolismo , División Celular , Ciclo Celular
5.
Int J Nanomedicine ; 12: 4371-4395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28652739

RESUMEN

The discovery of biogenic magnetic nanoparticles (BMNPs) in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis), and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin.


Asunto(s)
Bacterias/química , Ferritinas/fisiología , Nanopartículas de Magnetita , Apoferritinas/química , Apoferritinas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ferritinas/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA