Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Trends Genet ; 39(9): 649-671, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230864

RESUMEN

Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Biología Computacional , Perfilación de la Expresión Génica/métodos
2.
Genome Res ; 32(11-12): 2028-2042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36418061

RESUMEN

With its nuclear dualism, the ciliate Paramecium constitutes a unique model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of approximately 45,000 TE-derived internal eliminated sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by noncoding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with high-throughput sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), whereas TEs are eliminated at a later stage. We show that DNA elimination proceeds independently of replication. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends, and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision by acquiring stronger sequence determinants and escaping epigenetic control.


Asunto(s)
Paramecium tetraurelia , Paramecium tetraurelia/genética , ADN Protozoario/genética , ARN no Traducido , Elementos Transponibles de ADN/genética , Células Germinativas
3.
Nat Commun ; 15(1): 6042, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025889

RESUMEN

Centrioles are the core constituent of centrosomes, microtubule-organizing centers involved in directing mitotic spindle assembly and chromosome segregation in animal cells. In sexually reproducing species, centrioles degenerate during oogenesis and female meiosis is usually acentrosomal. Centrioles are retained during male meiosis and, in most species, are reintroduced with the sperm during fertilization, restoring centriole numbers in embryos. In contrast, the presence, origin, and function of centrioles in parthenogenetic species is unknown. We found that centrioles are maternally inherited in two species of asexual parthenogenetic nematodes and identified two different strategies for maternal inheritance evolved in the two species. In Rhabditophanes diutinus, centrioles organize the poles of the meiotic spindle and are inherited by both the polar body and embryo. In Disploscapter pachys, the two pairs of centrioles remain close together and are inherited by the embryo only. Our results suggest that maternally-inherited centrioles organize the embryonic spindle poles and act as a symmetry-breaking cue to induce embryo polarization. Thus, in these parthenogenetic nematodes, centrioles are maternally-inherited and functionally replace their sperm-inherited counterparts in sexually reproducing species.


Asunto(s)
Centriolos , Herencia Materna , Partenogénesis , Animales , Partenogénesis/genética , Femenino , Centriolos/metabolismo , Centriolos/genética , Masculino , Herencia Materna/genética , Meiosis/genética , Huso Acromático/metabolismo , Nematodos/genética , Rhabditoidea/genética , Rhabditoidea/fisiología , Espermatozoides/metabolismo , Cuerpos Polares/metabolismo , Embrión no Mamífero
5.
Front Cell Infect Microbiol ; 11: 761945, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858876

RESUMEN

Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1ß). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.


Asunto(s)
Listeria monocytogenes , Listeria , Listeriosis , Animales , Femenino , Hepatocitos , Humanos , Listeria monocytogenes/genética , Ratones , Infección Persistente , Embarazo , Secretoma
6.
Nat Commun ; 12(1): 5221, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471117

RESUMEN

Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase. Conserved, large and highly transcribed genes form boundaries that segment the central part of the chromosome into domains, whereas the terminal ends tend to be transcriptionally quiescent compartments with different structural features. The onset of metabolic differentiation is accompanied by a rearrangement of chromosome architecture, from a rather 'open' to a 'closed' conformation, in which highly expressed specialized metabolite biosynthetic genes form new boundaries. Thus, our results indicate that the linear chromosome of S. ambofaciens is partitioned into structurally distinct entities, suggesting a link between chromosome folding, gene expression and genome evolution.


Asunto(s)
Antibacterianos/metabolismo , Cromosomas Bacterianos , Streptomyces/genética , Streptomyces/metabolismo , Estructuras Cromosómicas , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Familia de Multigenes , Transcriptoma
7.
J Immunother ; 34(1): 65-75, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21150714

RESUMEN

Dendritic cell-derived exosomes (Dex) are nanovesicles bearing major histocompatibility complexes promoting T-cell-dependent antitumor effects in mice. Two phase I clinical trials aimed at vaccinating cancer patients with peptide-pulsed Dex have shown the feasibility and safety of inoculating clinical-grade Dex, but have failed to show their immunizing capacity. These low immunogenic capacities have led us to develop second-generation Dex with enhanced immunostimulatory properties. Here, we show that interferon-γ is a key cytokine conditioning the dendritic cell to induce the expression of CD40, CD80, CD86, and CD54 on Dex, endowing them with direct and potent peptide-dependent CD8(+) T-cell-triggering potential in vitro and in vivo. In this study, we describe the clinical grade process to manufacture large-scale interferon-γ-Dex vaccines and their quality control parameters currently used in a phase II trial.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Células Dendríticas/inmunología , Exosomas/inmunología , Interferón gamma/inmunología , Animales , Presentación de Antígeno , Antígenos de Neoplasias/inmunología , Antígeno B7-1/genética , Antígeno B7-2/genética , Antígenos CD40 , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/metabolismo , Expresión Génica , Humanos , Immunoblotting , Molécula 1 de Adhesión Intercelular/genética , Activación de Linfocitos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA