Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FEMS Yeast Res ; 18(8)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169781

RESUMEN

Nutrient sensing and signaling controls the cellular response to extracellular nutrients and intracellular metabolites. Nutrient-dependent regulation of metabolism ensures balanced energy production and expenditure. We show that disturbing energy balance by forcing fatty acid synthesis has profound impact on metabolism and physiology of the yeast cell. In addition to an expected increase in storage lipids, we observed increased ß-oxidation and reduced amino acid biosynthesis, indicating increased activity of nutrient-sensitive kinase Snf1p. We also observed increased sensitivity to rapamycin as well as decreased ribosome biogenesis and translation, indicating reduced activity of nutrient-sensitive kinase target of rapamycin complex 1. Additionally, we detected increased levels of oxidative stress and lower levels of amino acids. This study provides detailed insight into cellular resource redistribution in response to forced fatty acid synthesis and enables optimized engineering of microbial lipid production.


Asunto(s)
Metabolismo Energético , Ácidos Grasos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética
2.
Biotechnol Bioeng ; 115(4): 932-942, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29313898

RESUMEN

Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids in the form of TAGs, but these are typically not rich in saturated fatty acids. To make yeast an attractive host for microbial production of CBLs, its fatty acid composition needs to be optimized. We engineered Saccharomyces cerevisiae yeast strains toward a modified fatty acid synthesis. Analysis of the fatty acid profile of the modified strains showed that the fatty acid content as well as the titers of saturated fatty acids and the titers of TAGs were increased. The relative content of potential CBLs in the TAG pool reached up to 22% in our engineered strains, which is a 5.8-fold increase over the wild-type. SOS content reached a level of 9.8% in our engineered strains, which is a 48-fold increase over the wild type.


Asunto(s)
ADN de Hongos/genética , Grasas de la Dieta/metabolismo , Ácidos Oléicos/metabolismo , Saccharomyces cerevisiae/enzimología , Ácidos Esteáricos/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Grasas de la Dieta/análisis , Escherichia coli/genética , Ingeniería Metabólica , Ácidos Oléicos/análisis , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácidos Esteáricos/análisis , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
3.
Microb Cell Fact ; 17(1): 11, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370801

RESUMEN

BACKGROUND: Cocoa butter (CB) extracted from cocoa beans (Theobroma cacao) is the main raw material for chocolate production, but CB supply is insufficient due to the increased chocolate demand and limited CB production. CB is mainly composed of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0). In general, Saccharomyces cerevisiae produces TAGs as storage lipids, which consist of C16 and C18 fatty acids. However, cocoa butter-like lipids (CBL, which are composed of POP, POS and SOS) are not among the major TAG forms in yeast. TAG biosynthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT), and it is essential to modulate the yeast TAG biosynthetic pathway for higher CBL production. RESULTS: We cloned seven GPAT genes and three LPAT genes from cocoa cDNA, in order to screen for CBL biosynthetic gene candidates. By expressing these cloned cocoa genes and two synthesized cocoa DGAT genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some of the strains. In the best producer, the potential CBL content was eightfold higher than the control strain, suggesting the cocoa genes expressed in this strain were functional and might be responsible for CBL biosynthesis. Moreover, the potential CBL content increased 134-fold over the control Y29-TcD1 (IMX581 sct1Δ ale1Δ lro1Δ dga1Δ with TcDGAT1 expression) in strain Y29-441 (IMX581 sct1Δ ale1Δ lro1Δ dga1Δ with TcGPAT4, TcLPAT4 and TcDGAT1 expression) further suggesting cocoa GPAT and LPAT genes functioned in yeast. CONCLUSIONS: We demonstrated that cocoa TAG biosynthetic genes functioned in S. cerevisiae and identified cocoa genes that may be involved in CBL production. Moreover, we found that expression of some cocoa CBL biosynthetic genes improved potential CBL production in S. cerevisiae, showing that metabolic engineering of yeast for cocoa butter production can be realized by manipulating the key enzymes GPAT, LPAT and DGAT in the TAG biosynthetic pathway.


Asunto(s)
Cacao/genética , Grasas de la Dieta/metabolismo , Saccharomyces cerevisiae/genética , Triglicéridos/biosíntesis , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Diacilglicerol O-Acetiltransferasa/metabolismo , Grasas de la Dieta/análisis , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/enzimología , Biología Sintética/métodos , Triglicéridos/genética
4.
Proc Natl Acad Sci U S A ; 110(14): E1273-81, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509282

RESUMEN

The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements. We have resolved the vibrational changes associated with the open states of the channel (P(2)(390) and P(3)(520)) and characterized several proton transfer events. Analysis of the amide I vibrations suggests a transient increase in hydration of transmembrane α-helices with a t(1/2) = 60 µs, which tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 µs), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. Previous conclusions on the involvement of glutamic acid 90 in channel opening are ruled out by demonstrating that E90 deprotonates exclusively in the nonconductive P(4)(480) state. Our results merge into a mechanistic proposal that relates the observed proton transfer reactions and the protein conformational changes to the gating of the cation channel.


Asunto(s)
Activación del Canal Iónico/fisiología , Modelos Moleculares , Conformación Proteica , Protones , Channelrhodopsins , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de la radiación , Cinética , Rayos Láser , Modelos Químicos , Fotoquímica , Espectroscopía Infrarroja por Transformada de Fourier
5.
Metab Eng ; 29: 1-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25662836

RESUMEN

Microbial synthesis of oleochemicals has advanced significantly in the last decade. Microbes have been engineered to convert renewable substrates to a wide range of molecules that are ordinarily made from plant oils. This approach is attractive because it can reduce a motivation for converting tropical rainforest into farmland while simultaneously enabling access to molecules that are currently expensive to produce from oil crops. In the last decade, enzymes responsible for producing oleochemicals in nature have been identified, strategies to circumvent native regulation have been developed, and high yielding strains have been designed, built, and successfully demonstrated. This review will describe the metabolic pathways that lead to the diverse molecular features found in natural oleochemicals, highlight successful metabolic engineering strategies, and comment on areas where future work could further advance the field.


Asunto(s)
Ácidos Grasos/biosíntesis , Ingeniería Metabólica/métodos , Aceites de Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(30): 12277-82, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746902

RESUMEN

SNARE proteins are crucial for membrane fusion in vesicular transport. To ensure efficient and accurate fusion, SNAREs need to be sorted into different budding vesicles. This process is usually regulated by specific recognition between SNAREs and their adaptor proteins. How different pairs of SNAREs and adaptors achieve their recognition is unclear. Here, we report the recognition between yeast SNARE Vti1p and its adaptor Ent3p derived from three crystal structures. Surprisingly, this yeast pair Vti1p/Ent3p interacts through a distinct binding site compared to their homologues vti1b/epsinR in mammals. An opposite surface on Vti1p_Habc domain binds to a conserved area on the epsin N-terminal homology (ENTH) domain of Ent3p. Two-hybrid, in vitro pull-down and in vivo experiments indicate this binding interface is important for correct localization of Vti1p in the cell. This previously undescribed discovery that a cargo and adaptor pair uses different binding sites across species suggests the diversity of SNARE-adaptor recognition in vesicular transport.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Fusión de Membrana/fisiología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
7.
ACS Synth Biol ; 12(8): 2271-2277, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37486342

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, with its ability to target a specific DNA locus using guide RNAs (gRNAs), is particularly suited for targeted mutagenesis. The targeted diversification of nucleotides in Saccharomyces cerevisiae using a CRISPR-guided error-prone DNA polymerase─called yEvolvR─was recently reported. Here, we investigate the effect of multiplexed expression of gRNAs flanking a short stretch of DNA on reversion and mutation frequencies using yEvolvR. Phenotypic assays demonstrate that higher reversion frequencies are observed when expressing multiple gRNAs simultaneously. Next generation sequencing reveals a synergistic effect of multiple gRNAs on mutation frequencies, which is more pronounced in a mutant with a partially defective DNA mismatch repair system. Additionally, we characterize a galactose-inducible yEvolvR, which enables temporal control of mutagenesis. This study demonstrates that multiplex expression of gRNAs and induction of mutagenesis greatly improves the capabilities of yEvolvR for generation of genetic libraries in vivo.


Asunto(s)
Tasa de Mutación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , ADN , ADN Polimerasa Dirigida por ADN/genética , ARN , Mutación
8.
ACS Synth Biol ; 10(12): 3461-3474, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34860007

RESUMEN

Standardisation of genetic parts has become a topic of increasing interest over the last decades. The promise of simplifying molecular cloning procedures, while at the same time making them more predictable and reproducible has led to the design of several biological standards, one of which is modular cloning (MoClo). The Yeast MoClo toolkit provides a large library of characterised genetic parts combined with a comprehensive and flexible assembly strategy. Here we aimed to (1) simplify the adoption of the standard by providing a simple design tool for including new parts in the MoClo library, (2) characterise the toolkit further by demonstrating the impact of a BglII site in promoter parts on protein expression, and (3) expand the toolkit to enable efficient construction of gRNA arrays, marker-less integration cassettes and combinatorial libraries. These additions make the toolkit more applicable for common engineering tasks and will further promote its adoption in the yeast biological engineering community.


Asunto(s)
ARN Guía de Kinetoplastida , Saccharomyces cerevisiae , Clonación Molecular , Biblioteca de Genes , Ingeniería Genética/métodos , Genómica , ARN Guía de Kinetoplastida/genética , Saccharomyces cerevisiae/genética
9.
SLAS Discov ; 26(5): 581-603, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33834873

RESUMEN

The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.


Asunto(s)
Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Biología Sintética/métodos , Desarrollo de Medicamentos/tendencias , Descubrimiento de Drogas/tendencias , Humanos , Biología Sintética/tendencias
10.
Photochem Photobiol Sci ; 9(2): 194-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20126794

RESUMEN

The light-gated cation channel Channelrhodopsin-2 (ChR2), a retinylidene protein found in the eye-spot of Chlamydomonas reinhardtii, became an optogenetic tool to trigger neurophysiological responses by light and, thus, revolutionized spatio-temporal studies of such processes. The reaction mechanism still remains elusive but recent vibrational spectroscopic experiments started to resolve details of the associated structural changes during the photocycle. Large alterations in the polypeptide backbone were observed by FT-IR spectroscopy that precede and succeed the opening and closing of the channel, respectively. However, the molecular switch that controls gating is still unknown. Here, we present difference spectra of the D156E mutant of ChR2 and assign the observed vibrational bands to crucial hydrogen bonding changes of this residue in various intermediate states of the photoreaction. By comparison with spectra of wild-type ChR2 and the C128T mutant and correlation to electrophysiological studies, we propose the DC gate as a crucial hydrogen-bonding interaction between D156 and C128 which may represent the valve of the channel.


Asunto(s)
Proteínas Algáceas/química , Ácido Aspártico/química , Cistina/química , Canales Iónicos/química , Proteínas Algáceas/genética , Sustitución de Aminoácidos , Chlamydomonas reinhardtii/química , Ácido Glutámico/química , Enlace de Hidrógeno , Canales Iónicos/genética , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectroscopía Infrarroja por Transformada de Fourier
11.
Metab Eng Commun ; 6: 22-27, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29896445

RESUMEN

Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy by overexpressing genes encoding a deregulated acetyl-CoA carboxylase, ACC1S659A/S1157A(ACC1**), as well as the last two steps of TAG formation: phosphatidic phosphatase (PAH1) and diacylglycerol acyltransferase (DGA1), ultimately leading to 129 mg∙gCDW-1 of TAGs. Disruption of TAG lipase genes TGL3, TGL4, TGL5 and sterol acyltransferase gene ARE1 increased the TAG content to 218 mg∙gCDW-1. Further disruption of the beta-oxidation by deletion of POX1, as well as glycerol-3-phosphate utilization through deletion of GUT2, did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter PXA1 led to accumulation of 254 mg∙gCDW-1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species for high level lipid production.

12.
AMB Express ; 7(1): 34, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28168573

RESUMEN

Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0), but CB supply is limited. Therefore, CB-like lipids (CBL, which are composed of POP, POS and SOS) are in great demand. Saccharomyces cerevisiae produces TAGs as storage lipids, which are also mainly composed of C16 and C18 fatty acids. However, POP, POS and SOS are not among the major TAG forms in yeast. TAG synthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT). In order to produce CBL in S. cerevisiae, we selected six cocoa genes encoding GPAT, LPAT and DGAT potentially responsible for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast strains harboring cocoa genes increased 190, 230 and 196% over the control strain, respectively; especially, the potential SOS content of the three yeast strains increased 254, 476 and 354% over the control strain. Moreover, one of the three yeast strains had a 2.25-fold increased TAG content and 6.7-fold higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis.

13.
PLoS One ; 8(6): e66304, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776654

RESUMEN

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) on transport vesicles and target membranes are crucial for vesicle targeting and fusion. They form SNARE complexes, which contain four α-helical SNARE motifs contributed by three or four different SNAREs. Most SNAREs function only in a single transport step. The yeast SNARE Vti1p participates in four distinct SNARE complexes in transport from the trans Golgi network to late endosomes, in transport to the vacuole, in retrograde transport from endosomes to the trans Golgi network and in retrograde transport within the Golgi. So far, all vti1 mutants investigated had mutations within the SNARE motif. Little is known about the function of the N-terminal domain of Vti1p, which forms a three helix bundle called H(abc) domain. Here we generated a temperature-sensitive mutant of this domain to study the effects on different transport steps. The secondary structure of wild type and vti1-3 H(abc) domain was analyzed by circular dichroism spectroscopy. The amino acid exchanges identified in the temperature-sensitive vti1-3 mutant caused unfolding of the H(abc) domain. Transport pathways were investigated by immunoprecipitation of newly synthesized proteins after pulse-chase labeling and by fluorescence microscopy of a GFP-tagged protein cycling between plasma membrane, early endosomes and Golgi. In vti1-3 cells transport to the late endosome and assembly of the late endosomal SNARE complex was blocked at 37°C. Retrograde transport to the trans Golgi network was affected while fusion with the vacuole was possible but slower. Steady state levels of SNARE complexes mediating these steps were less affected than that of the late endosomal SNARE complex. As different transport steps were affected our data demonstrate the importance of a folded Vti1p H(abc) domain for transport.


Asunto(s)
Endosomas/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico/fisiología , Dicroismo Circular , Aparato de Golgi/metabolismo , Inmunoprecipitación , Cinética , Microscopía Fluorescente , Complejos Multiproteicos/genética , Mutación/genética , Desplegamiento Proteico , Proteínas Qb-SNARE/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Técnicas del Sistema de Dos Híbridos , Levaduras
14.
Chem Biol Drug Des ; 74(6): 527-34, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19807733

RESUMEN

(+/-)-2-[(4-Phenoxyphenylsulfonyl)methyl]thiirane 1 is a potent and selective mechanism-based inhibitor of the gelatinase sub-class of the zinc-dependent matrix metalloproteinase family. Inhibitor 1 has excellent activity in in vivo models of gelatinase-dependent disease. We demonstrate that the mechanism of inhibition is a rate-limiting gelatinase-catalyzed thiolate generation via deprotonation adjacent to the thiirane, with concomitant thiirane opening. A corollary to this mechanism is the prediction that thiol-containing structures, related to thiirane-opened 1, will possess potent matrix metalloproteinase inhibitory activity. This prediction was validated by the synthesis of the product of this enzyme-catalyzed reaction on 1, which exhibited a remarkable K(i) of 530 pm against matrix metalloproteinase-2. Thiirane 1 acts as a caged thiol, unmasked selectively in the active sites of gelatinases. This mechanism is unprecedented in the substantial literature on inhibition of zinc-dependent hydrolases.


Asunto(s)
Inhibidores Enzimáticos/química , Compuestos Heterocíclicos con 1 Anillo/química , Metaloproteinasa 2 de la Matriz/metabolismo , Sulfonas/química , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos con 1 Anillo/farmacología , Cinética , Inhibidores de la Metaloproteinasa de la Matriz , Simulación de Dinámica Molecular , Estereoisomerismo , Sulfonas/farmacología , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA