RESUMEN
Chicken γδ T lymphocytes are present in a variety of tissues such as blood, spleen and intestine. They constitute a major cytotoxic population. In chicken, Salmonella immunization as well as vaccination against Newcastle disease virus are accompanied by an increase of γδ T lymphocytes in peripheral blood, which may be activated, and thus represent a protective immune response. It has been published that activation of avian γδ T cells can occur in a MHC non-restricted manner. Ulvans are complex sulfated polysaccharides composed of disaccharide repetitions found in the cell walls of green algae belonging to the genus Ulva. We recently demonstrated that a purified ulvan extract activates chicken heterophils and monocytes in vivo through TLR2 and TLR4 receptors when given in drinking water. We demonstrate here, that the same extract given once in drinking water at 25 and 50 mg/l, results in increased membrane expression of Major Histocompatibility Complex class 2 as soon as day 2, as detected using flow cytometry. We conclude chicken γδ T lymphocytes to be activated, or at least primed, in vivo, with the extract. Further experiments are required to fully understand whether their activation or priming is the result of direct and/or indirect mechanisms.
Asunto(s)
Pollos/inmunología , Linfocitos Intraepiteliales/inmunología , Activación de Linfocitos , Polisacáridos/inmunología , Ulva/inmunología , Animales , Agua Potable , Inmunidad Innata/efectos de los fármacos , Recuento de Linfocitos , Extractos Vegetales/inmunología , Polisacáridos/administración & dosificación , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Ulva/químicaRESUMEN
Responsiveness to invasive pathogens, clearance via the inflammatory response, and activation of appropriate acquired responses are all coordinated by innate host defenses. Toll-like receptor (TLR) ligands are potent immune-modulators with profound effects on the generation of adaptive immune responses. This property is being exploited in TLR-based vaccines and therapeutic agents in chickens. However, for administering the TLR agonist, all previous studies used in ovo, intra-muscular or intra-venous routes that cannot be performed in usual farming conditions, thus highlighting the need for TLR ligands that display systemic immune effects when given orally (per os). Here we have demonstrated that an ulvan extract of Ulva armoricana is able to activate avian heterophils and monocytes in vitro. Using specific inhibitors, we have evidenced that ulvan may be a new ligand for TLR2 and TLR4; and that they regulate heterophil activation in slightly different manner. Moreover, activation of heterophils as well as of monocytes leads to release pro-inflammatory cytokines, including interleukin1-ß, interferon α and interferon γ, through pathways that we partly identified. Finally, when given per os to animals ulvan induces heterophils and monocytes to be activated in vivo thus leading to a transient release of pro-inflammatory cytokines with plasma concentrations returning toward baseline levels at day 3.
Asunto(s)
Proteínas Aviares/inmunología , Pollos/inmunología , Monocitos/inmunología , Polisacáridos/farmacología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Animales , Citocinas/inmunología , Monocitos/citologíaRESUMEN
A new gas chromatography-mass spectrometry (GC-MS) method for the localization of double bond in monounsaturated 3-hydroxyalkenoic acids monomers has been developed. A three steps derivation assay was used including a methanolysis, then acetylation and dimethyldisulfide (DMDS) addition to alkene groups. Electron impact GC-MS analysis of such derivatives offers characteristic fragments allowing the unambiguous determination of double bond position in side chain. This novel method is well-suited for the routine analysis of poly-beta-hydroxyalkanoates (PHAs), and was used to characterize monounsaturated monomers in both 3-hydroxyalkenoic acids standards as well as in mcl-PHAs and poly(3-hydroxyoctanoate-co-3-hydroxyundecenoate) (PHOU) produced by bacterial strain Pseudomonas guezennei from glucose or a mixture of sodium octanoate plus 10-undecenoic acid, respectively.
Asunto(s)
Biopolímeros/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Poliésteres/química , Acetilación , Ácidos Grasos Insaturados/química , Metano , Conformación MolecularRESUMEN
The biosynthesis of medium chain length poly(3-hydroxyalkanoates) mcl PHAs by Pseudomonas guezennei using glucose, sodium octanoate, and 10-undecenoic acid as sole or mixed carbon sources was investigated. Chemical composition of polyesters was analyzed by GCMS and NMR. The copolyester produced by P. guezennei from glucose mainly consisted of 3-hydroxyoctanoate and 3-hydroxydecanoate, and the presence of 3-hydroxydodec-5-enoate was demonstrated. Using sodium octanoate as the sole nutrient, the microorganism produced a poly(3-hydroxyoctanoate) (PHO) polymer containing up to 94 mol% 3-hydroxyoctanoate. Biosynthesis of poly[(3-hydroxyoctanoate)-co-(3-hydroxyundecenoate)] (PHOU) copolymers bearing terminal reactive double bonds on its side chains with unsaturation degree ranging from 8.8% to 78.2% was obtained by tuning the ratio of sodium octanoate/10-undecenoic acid in the medium. Thermal analysis indicated semi-crystalline polymers with melting temperatures (T(m)) ranging from 46 to 55°C, fusion enthalpy (ΔH) comprised between 3 and 35 J/g and glass transition temperature (T(g)) from -36 to -44°C, except for the highly amorphous 78.2% unsaturated PHOU with a low T(g) (-50°C). Molecular weights determined by GPC ranged from 119000 and 530000 g/mol. The biosynthesis of natural polyesters with controlled ratio of vinyl-terminated side chains is of great interest for further chemical modifications.