RESUMEN
The global spread of the SARS-CoV-2 pandemic, originating in Wuhan, China, has had profound consequences on both health and the economy. Traditional alignment-based phylogenetic tree methods for tracking epidemic dynamics demand substantial computational power due to the growing number of sequenced strains. Consequently, there is a pressing need for an alignment-free approach to characterize these strains and monitor the dynamics of various variants. In this work, we introduce a swift and straightforward tool named GenoSig, implemented in C++. The tool exploits the Di and Tri nucleotide frequency signatures to delineate the taxonomic lineages of SARS-CoV-2 by employing diverse machine learning (ML) and deep learning (DL) models. Our approach achieved a tenfold cross-validation accuracy of 87.88% (± 0.013) for DL and 86.37% (± 0.0009) for Random Forest (RF) model, surpassing the performance of other ML models. Validation using an additional unexposed dataset yielded comparable results. Despite variations in architectures between DL and RF, it was observed that later clades, specifically GRA, GRY, and GK, exhibited superior performance compared to earlier clades G and GH. As for the continental origin of the virus, both DL and RF models exhibited lower performance than in predicting clades. However, both models demonstrated relatively higher accuracy for Europe, North America, and South America compared to other continents, with DL outperforming RF. Both models consistently demonstrated a preference for cytosine and guanine over adenine and thymine in both clade and continental analyses, in both Di and Tri nucleotide frequencies signatures. Our findings suggest that GenoSig provides a straightforward approach to address taxonomic, epidemiological, and biological inquiries, utilizing a reductive method applicable not only to SARS-CoV-2 but also to similar research questions in an alignment-free context.
Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiología , Genómica , NucleótidosRESUMEN
Metagenome community analyses, driven by the continued development in sequencing technology, is rapidly providing insights in many aspects of microbiology and becoming a cornerstone tool. Illumina, Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) are the leading technologies, each with their own advantages and drawbacks. Illumina provides accurate reads at a low cost, but their length is too short to close bacterial genomes. Long reads overcome this limitation, but these technologies produce reads with lower accuracy (ONT) or with lower throughput (PacBio high-fidelity reads). In a critical first analysis step, reads are assembled to reconstruct genomes or individual genes within the community. However, to date, the performance of existing assemblers has never been challenged with a complex mock metagenome. Here, we evaluate the performance of current assemblers that use short, long or both read types on a complex mock metagenome consisting of 227 bacterial strains with varying degrees of relatedness. We show that many of the current assemblers are not suited to handle such a complex metagenome. In addition, hybrid assemblies do not fulfil their potential. We conclude that ONT reads assembled with CANU and Illumina reads assembled with SPAdes offer the best value for reconstructing genomes and individual genes of complex metagenomes, respectively.
Asunto(s)
Bacterias , Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Metagenómica , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Genoma Bacteriano/genética , Microbiota/genéticaRESUMEN
MOTIVATION: One of the most widespread methods used in taxonomy studies to distinguish between strains or taxa is the calculation of average nucleotide identity. It requires a computationally expensive alignment step and is therefore not suitable for large-scale comparisons. Short oligonucleotide-based methods do offer a faster alternative but at the expense of accuracy. Here, we aim to address this shortcoming by providing a software that implements a novel method based on short-oligonucleotide frequencies to compute inter-genomic distances. RESULTS: Our tetranucleotide and hexanucleotide implementations, which were optimized based on a taxonomically well-defined set of over 200 newly sequenced bacterial genomes, are as accurate as the short oligonucleotide-based method TETRA and average nucleotide identity, for identifying bacterial species and strains, respectively. Moreover, the lightweight nature of this method makes it applicable for large-scale analyses. AVAILABILITY AND IMPLEMENTATION: The method introduced here was implemented, together with other existing methods, in a dependency-free software written in C, GenDisCal, available as source code from https://github.com/LM-UGent/GenDisCal. The software supports multithreading and has been tested on Windows and Linux (CentOS). In addition, a Java-based graphical user interface that acts as a wrapper for the software is also available. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Genómica , Programas Informáticos , Bacterias/genética , Genoma Bacteriano , OligonucleótidosRESUMEN
The rise of metagenomics offers a leap forward for understanding the genetic diversity of microorganisms in many different complex environments by providing a platform that can identify potentially unlimited numbers of known and novel microorganisms. As such, it is impossible to imagine new major initiatives without metagenomics. Nevertheless, it represents a relatively new discipline with various levels of complexity and demands on bioinformatics. The underlying principles and methods used in metagenomics are often seen as common knowledge and often not detailed or fragmented. Therefore, we reviewed these to guide microbiologists in taking the first steps into metagenomics. We specifically focus on a workflow aimed at reconstructing individual genomes, that is, metagenome-assembled genomes, integrating DNA sequencing, assembly, binning, identification and annotation.
Asunto(s)
Metagenoma , Metagenómica , Biología Computacional , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Although the total number of microbial taxa on Earth is under debate, it is clear that only a small fraction of these has been cultivated and validly named. Evidently, the inability to culture most bacteria outside of very specific conditions severely limits their characterization and further studies. In the last decade, a major part of the solution to this problem has been the use of metagenome sequencing, whereby the DNA of an entire microbial community is sequenced, followed by the in silico reconstruction of genomes of its novel component species. The large discrepancy between the number of sequenced type strain genomes (around 12,000) and total microbial diversity (106-1012 species) directs these efforts to de novo assembly and binning. Unfortunately, these steps are error-prone and as such, the results have to be intensely scrutinized to avoid publishing incomplete and low-quality genomes. RESULTS: We developed MAGISTA (metagenome-assembled genome intra-bin statistics assessment), a novel approach to assess metagenome-assembled genome quality that tackles some of the often-neglected drawbacks of current reference gene-based methods. MAGISTA is based on alignment-free distance distributions between contig fragments within metagenomic bins, rather than a set of reference genes. For proper training, a highly complex genomic DNA mock community was needed and constructed by pooling genomic DNA of 227 bacterial strains, specifically selected to obtain a wide variety representing the major phylogenetic lineages of cultivable bacteria. CONCLUSIONS: MAGISTA achieved a 20% reduction in root-mean-square error in comparison to the marker gene approach when tested on publicly available mock metagenomes. Furthermore, our highly complex genomic DNA mock community is a very valuable tool for benchmarking (new) metagenome analysis methods.