Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(5): e3002082, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37126512

RESUMEN

The utility of mouse and rat studies critically depends on their replicability in other laboratories. A widely advocated approach to improving replicability is through the rigorous control of predefined animal or experimental conditions, known as standardization. However, this approach limits the generalizability of the findings to only to the standardized conditions and is a potential cause rather than solution to what has been called a replicability crisis. Alternative strategies include estimating the heterogeneity of effects across laboratories, either through designs that vary testing conditions, or by direct statistical analysis of laboratory variation. We previously evaluated our statistical approach for estimating the interlaboratory replicability of a single laboratory discovery. Those results, however, were from a well-coordinated, multi-lab phenotyping study and did not extend to the more realistic setting in which laboratories are operating independently of each other. Here, we sought to test our statistical approach as a realistic prospective experiment, in mice, using 152 results from 5 independent published studies deposited in the Mouse Phenome Database (MPD). In independent replication experiments at 3 laboratories, we found that 53 of the results were replicable, so the other 99 were considered non-replicable. Of the 99 non-replicable results, 59 were statistically significant (at 0.05) in their original single-lab analysis, putting the probability that a single-lab statistical discovery was made even though it is non-replicable, at 59.6%. We then introduced the dimensionless "Genotype-by-Laboratory" (GxL) factor-the ratio between the standard deviations of the GxL interaction and the standard deviation within groups. Using the GxL factor reduced the number of single-lab statistical discoveries and alongside reduced the probability of a non-replicable result to be discovered in the single lab to 12.1%. Such reduction naturally leads to reduced power to make replicable discoveries, but this reduction was small (from 87% to 66%), indicating the small price paid for the large improvement in replicability. Tools and data needed for the above GxL adjustment are publicly available at the MPD and will become increasingly useful as the range of assays and testing conditions in this resource increases.


Asunto(s)
Laboratorios , Proyectos de Investigación , Animales , Ratas , Estudios Prospectivos , Genotipo , Bases de Datos Factuales
2.
Mol Psychiatry ; 28(5): 1946-1959, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36631597

RESUMEN

Defective neuritogenesis is a contributing pathogenic mechanism underlying a variety of neurodevelopmental disorders. Single gene mutations in activity-dependent neuroprotective protein (ADNP) are the most frequent among autism spectrum disorders (ASDs) leading to the ADNP syndrome. Previous studies showed that during neuritogenesis, Adnp localizes to the cytoplasm/neurites, and Adnp knockdown inhibits neuritogenesis in culture. Here, we hypothesized that Adnp is localized in the cytoplasm during neurite formation and that this process is mediated by 14-3-3. Indeed, applying the 14-3-3 inhibitor, difopein, blocked Adnp cytoplasmic localization. Furthermore, co-immunoprecipitations showed that Adnp bound 14-3-3 proteins and proteomic analysis identified several potential phosphorylation-dependent Adnp/14-3-3 binding sites. We further discovered that knockdown of Adnp using in utero electroporation of mouse layer 2/3 pyramidal neurons in the somatosensory cortex led to previously unreported changes in neurite formation beginning at P0. Defects were sustained throughout development, the most notable included increased basal dendrite number and axon length. Paralleling the observed morphological aberrations, ex vivo calcium imaging revealed that Adnp deficient neurons had greater and more frequent spontaneous calcium influx in female mice. GRAPHIC, a novel synaptic tracing technology substantiated this finding, revealing increased interhemispheric connectivity between female Adnp deficient layer 2/3 pyramidal neurons. We conclude that Adnp is localized to the cytoplasm by 14-3-3 proteins, where it regulates neurite formation, maturation, and functional cortical connectivity significantly building on our current understanding of Adnp function and the etiology of ADNP syndrome.

3.
Am J Med Genet A ; 194(5): e63539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38204290

RESUMEN

The neurodevelopmental disorder known as Helsmoortel-van der Aa syndrome (HVDAS, MIM#616580) or ADNP syndrome (Orphanet, ORPHA:404448) is a multiple congenital anomaly (MCA) condition, reported as a syndrome in 2014, associated with deleterious variants in the ADNP gene (activity-dependent neuroprotective protein; MIM*611386) in several children. First reported in the turn of the century, ADNP is a protein with crucial functions for the normal development of the central nervous system and with pleiotropic effects, explaining the multisystemic character of the syndrome. Affected individuals present with striking facial dysmorphic features and variable congenital defects. Herein, we describe a novel case series of HVDAS Italian patients, illustrating their clinical findings and the related genotype-phenotype correlations. Interestingly, the cutaneous manifestations are also extensively expanded, giving an important contribution to the clinical characterization of the condition, and highlighting the relation between skin abnormalities and ADNP defects.


Asunto(s)
Anomalías Múltiples , Trastorno Autístico , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Niño , Humanos , Mutación , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Trastorno Autístico/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Homeodominio/genética , Síndrome
4.
Eur J Neurosci ; 58(2): 2641-2652, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36669790

RESUMEN

NAP (NAPVSIPQ, drug candidate name, davunetide) is the neuroprotective fragment of activity-dependent neuroprotective protein (ADNP). Recent studies identified NAPVSIP as a Src homology 3 (SH3) domain-ligand association site, responsible for controlling signalling pathways regulating the cytoskeleton. Furthermore, the SIP motif in NAP/ADNP was identified as crucial for direct microtubule end-binding protein interaction facilitating microtubule dynamics and Tau microtubule interaction, at the microtubule end-binding protein site EB1 and EB3. Most de novo ADNP mutations reveal heterozygous STOP or frameshift STOP aberrations, driving the autistic/intellectual disability-related ADNP syndrome. Here, we report for the first time on a de novo missense mutation, resulting in ADNP containing NAPVISPQE instead of NAPVSIPQQ, in a child presenting developmental hypotonia, possibly associated with inflammation affecting food intake in early life coupled with fear of peer interactions and suggestive of a novel case of the ADNP syndrome. In silico modelling showed that the mutation Q (polar side chain) to E (negative side chain) affected the electrostatic characteristics of ADNP (reducing, while scattering the electrostatic positive patch). Comparison with the most prevalent pathogenic ADNP mutation, p.Tyr719*, indicated a further reduction in the electrostatic patch. Previously, exogenous NAP partially ameliorated deficits associated with ADNP p.Tyr719* mutations in transfected cells and in CRISPR/Cas9 genome edited cell and mouse models. These findings stress the importance of the NAP sequence in ADNP and as a future putative therapy for the ADNP syndrome.


Asunto(s)
Proteínas del Tejido Nervioso , Mutación Puntual , Ratones , Animales , Proteínas del Tejido Nervioso/genética , Oligopéptidos/genética , Oligopéptidos/metabolismo , Oligopéptidos/uso terapéutico , Microtúbulos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
5.
Mol Psychiatry ; 27(8): 3316-3327, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35538192

RESUMEN

De novo heterozygous mutations in activity-dependent neuroprotective protein (ADNP) cause autistic ADNP syndrome. ADNP mutations impair microtubule (MT) function, essential for synaptic activity. The ADNP MT-associating fragment NAPVSIPQ (called NAP) contains an MT end-binding protein interacting domain, SxIP (mimicking the active-peptide, SKIP). We hypothesized that not all ADNP mutations are similarly deleterious and that the NAPV portion of NAPVSIPQ is biologically active. Using the eukaryotic linear motif (ELM) resource, we identified a Src homology 3 (SH3) domain-ligand association site in NAP responsible for controlling signaling pathways regulating the cytoskeleton, namely NAPVSIP. Altogether, we mapped multiple SH3-binding sites in ADNP. Comparisons of the effects of ADNP mutations p.Glu830synfs*83, p.Lys408Valfs*31, p.Ser404* on MT dynamics and Tau interactions (live-cell fluorescence-microscopy) suggested spared toxic function in p.Lys408Valfs*31, with a regained SH3-binding motif due to the frameshift insertion. Site-directed-mutagenesis, abolishing the p.Lys408Valfs*31 SH3-binding motif, produced MT toxicity. NAP normalized MT activities in the face of all ADNP mutations, although, SKIP, missing the SH3-binding motif, showed reduced efficacy in terms of MT-Tau interactions, as compared with NAP. Lastly, SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), a major autism gene product, interact with the cytoskeleton through an actin-binding motif to modify behavior. Similarly, ELM analysis identified an actin-binding site on ADNP, suggesting direct SH3 and indirect SHANK3/ADNP associations. Actin co-immunoprecipitations from mouse brain extracts showed NAP-mediated normalization of Shank3-Adnp-actin interactions. Furthermore, NAP treatment ameliorated aberrant behavior in mice homozygous for the Shank3 ASD-linked InsG3680 mutation, revealing a fundamental shared mechanism between ADNP and SHANK3.


Asunto(s)
Trastorno Autístico , Proteínas de Homeodominio , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Animales , Ratones , Actinas , Trastorno Autístico/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
6.
Mol Psychiatry ; 27(11): 4590-4598, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35864319

RESUMEN

Post-traumatic stress disorder (PTSD) represents a global public health concern, affecting about 1 in 20 individuals. The symptoms of PTSD include intrusiveness (involuntary nightmares or flashbacks), avoidance of traumatic memories, negative alterations in cognition and mood (such as negative beliefs about oneself or social detachment), increased arousal and reactivity with irritable reckless behavior, concentration problems, and sleep disturbances. PTSD is also highly comorbid with anxiety, depression, and substance abuse. To advance the field from subjective, self-reported psychological measurements to objective molecular biomarkers while considering environmental influences, we examined a unique cohort of Israeli veterans who participated in the 1982 Lebanon war. Non-invasive oral 16S RNA sequencing was correlated with psychological phenotyping. Thus, a microbiota signature (i.e., decreased levels of the bacteria sp_HMT_914, 332 and 871 and Noxia) was correlated with PTSD severity, as exemplified by intrusiveness, arousal, and reactivity, as well as additional psychopathological symptoms, including anxiety, hostility, memory difficulties, and idiopathic pain. In contrast, education duration correlated with significantly increased levels of sp_HMT_871 and decreased levels of Bacteroidetes and Firmicutes, and presented an inverted correlation with adverse psychopathological measures. Air pollution was positively correlated with PTSD symptoms, psychopathological symptoms, and microbiota composition. Arousal and reactivity symptoms were correlated with reductions in transaldolase, an enzyme controlling a major cellular energy pathway, that potentially accelerates aging. In conclusion, the newly discovered bacterial signature, whether an outcome or a consequence of PTSD, could allow for objective soldier deployment and stratification according to decreases in sp_HMT_914, 332, 871, and Noxia levels, coupled with increases in Bacteroidetes levels. These findings also raise the possibility of microbiota pathway-related non-intrusive treatments for PTSD.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/psicología , Veteranos/psicología , Ansiedad , Comorbilidad
7.
Mol Psychiatry ; 26(5): 1619-1633, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31664177

RESUMEN

With Alzheimer's disease (AD) exhibiting reduced ability of neural stem cell renewal, we hypothesized that de novo mutations controlling embryonic development, in the form of brain somatic mutations instigate the disease. A leading gene presenting heterozygous dominant de novo autism-intellectual disabilities (ID) causing mutations is activity-dependent neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy. We discovered a genomic autism ADNP mutation (c.2188C>T) in postmortem AD olfactory bulbs and hippocampi. RNA-Seq of olfactory bulbs also identified a novel ADNP hotspot mutation, c.2187_2188insA. Altogether, 665 mutations in 596 genes with 441 mutations in AD patients (389 genes, 38% AD-exclusive mutations) and 104 genes presenting disease-causing mutations (OMIM) were discovered. OMIM AD mutated genes converged on cytoskeletal mechanisms, autism and ID causing mutations (about 40% each). The number and average frequencies of AD-related mutations per subject were higher in AD subjects compared to controls. RNA-seq datamining (hippocampus, dorsolateral prefrontal cortex, fusiform gyrus and superior frontal gyrus-583 subjects) yielded similar results. Overlapping all tested brain areas identified unique and shared mutations, with ADNP singled out as a gene associated with autism/ID/AD and presenting several unique aging/AD mutations. The large fusiform gyrus library (117 subjects) with high sequencing coverage correlated the c.2187_2188insA ADNP mutation frequency to Braak stage (tauopathy) and showed more ADNP mutations in AD specimens. In cell cultures, the ADNP-derived snippet NAP inhibited mutated-ADNP-microtubule (MT) toxicity and enhanced Tau-MT association. We propose a paradigm-shifting concept in the perception of AD whereby accumulating mosaic somatic mutations promote brain pathology.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Autístico , Proteínas de Homeodominio/genética , Discapacidad Intelectual , Proteínas del Tejido Nervioso/genética , Enfermedad de Alzheimer/genética , Trastorno Autístico/genética , Encéfalo/metabolismo , Humanos , Mutación
8.
Mol Psychiatry ; 26(11): 6550-6561, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33967268

RESUMEN

Activity-dependent neuroprotective protein (ADNP) is essential for brain formation and function. As such, de novo mutations in ADNP lead to the autistic ADNP syndrome and somatic ADNP mutations may drive Alzheimer's disease (AD) tauopathy. Sirtuin 1 (SIRT1) is positively associated with aging, the major risk for AD. Here, we revealed two key interaction sites for ADNP and SIRT1. One, at the microtubule end-binding protein (EB1 and EB3) Tau level, with EB1/EB3 serving as amplifiers for microtubule dynamics, synapse formation, axonal transport, and protection against tauopathy. Two, on the DNA/chromatin site, with yin yang 1, histone deacetylase 2, and ADNP, sharing a DNA binding motif and regulating SIRT1, ADNP, and EB1 (MAPRE1). This interaction was linked to sex- and age-dependent altered histone modification, associated with ADNP/SIRT1/WD repeat-containing protein 5, which mediates the assembly of histone modification complexes. Single-cell RNA and protein expression analyses as well as gene expression correlations placed SIRT1-ADNP and either MAPRE1 (EB1), MAPRE3 (EB3), or both in the same mouse and human cell; however, while MAPRE1 seemed to be similarly regulated to ADNP and SIRT1, MAPRE3 seemed to deviate. Finally, we demonstrated an extremely tight correlation for the gene transcripts described above, including related gene products. This correlation was specifically abolished in affected postmortem AD and Parkinson's disease brain select areas compared to matched controls, while being maintained in blood samples. Thus, we identified an ADNP-SIRT1 complex that may serve as a new target for the understanding of brain degeneration.


Asunto(s)
Histonas , Sirtuina 1 , Animales , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Metilación , Ratones , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
9.
Drug Dev Res ; 83(6): 1419-1424, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35774024

RESUMEN

With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.


Asunto(s)
Envejecimiento , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Centenarios , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Línea Celular , Femenino , Humanos , ARN Mensajero/genética
10.
J Neural Transm (Vienna) ; 127(2): 251-263, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32072336

RESUMEN

Activity-dependent neuroprotective protein (ADNP) and its protein snippet NAP (drug candidate CP201) regulate synapse formation and cognitive as well as behavioral functions, in part, through microtubule interaction. Given potential interactions between the microbiome and brain function, we now investigated the potential effects of the ADNP-deficient genotype, mimicking the ADNP syndrome on microbiota composition in the Adnp+/- mouse model. We have discovered a surprising robust sexually dichotomized Adnp genotype effect and correction by NAP (CP201) as follows. Most of the commensal bacterial microbiota tested were affected by the Adnp genotype and corrected by NAP treatment in a male sex-dependent manner. The following list includes all the bacterial groups tested-labeled in bold are male Adnp-genotype increased and corrected (decreased) by NAP. (1) Eubacteriaceae (EubV3), (2) Enterobacteriaceae (Entero), (3) Enterococcus genus (gEncocc), (4) Lactobacillus group (Lacto), (5) Bifidobacterium genus (BIF), (6) Bacteroides/Prevotella species (Bac), (7) Clostridium coccoides group (Coer), (8) Clostridium leptum group (Cluster IV, sgClep), and (9) Mouse intestinal Bacteroides (MIB). No similarities were found between males and females regarding sex- and genotype-dependent microbiota distributions. Furthermore, a female Adnp+/- genotype associated decrease (contrasting male increase) was observed in the Lactobacillus group (Lacto). Significant correlations were discovered between specific bacterial group loads and open-field behavior as well as social recognition behaviors. In summary, we discovered ADNP deficiency associated changes in commensal gut microbiota compositions, a sex-dependent biomarker for the ADNP syndrome and beyond. Strikingly, we discovered rapidly detected NAP (CP201) treatment-dependent biomarkers within the gut microbiota.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Conducta Animal , Microbioma Gastrointestinal , Naftoquinonas/farmacología , Proteínas del Tejido Nervioso/deficiencia , Animales , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/fisiopatología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Genotipo , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Naftoquinonas/administración & dosificación , Naftoquinonas/farmacocinética , Proteínas del Tejido Nervioso/genética , Conducta Social , Cognición Social , Síndrome
11.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937737

RESUMEN

The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/- heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.


Asunto(s)
Expresión Génica/genética , Proteínas de Homeodominio/genética , Actividad Motora/genética , Músculo Esquelético/fisiología , Proteínas del Tejido Nervioso/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Animales , Retroalimentación , Femenino , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Cadenas Ligeras de Miosina/genética , ARN Mensajero/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Lengua/fisiología , Vejiga Urinaria/fisiología
13.
Neurochem Res ; 44(6): 1494-1507, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30659505

RESUMEN

Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Pérdida Auditiva/etiología , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Animales , Corteza Auditiva , Trastorno del Espectro Autista/genética , Colina O-Acetiltransferasa/metabolismo , Femenino , Glutamato Descarboxilasa/metabolismo , Células Ciliadas Auditivas/citología , Pérdida Auditiva/genética , Masculino , Ratones , Mutación
14.
Bioessays ; 39(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28940660

RESUMEN

Activity-dependent neuroprotective protein (ADNP), discovered in our laboratory in 1999, has been characterized as a master gene vital for mammalian brain formation. ADNP de novo mutations in humans result in a syndromic form of autism-like spectrum disorder (ASD), including cognitive and motor deficits, the ADNP syndrome (Helsmoortel-Van Der Aa). One of the most important cellular processes associated with ADNP is the autophagy pathway, recently discovered by us as a key player in the pathophysiology of schizophrenia. In this regard, given the link between the microtubule and autophagy systems, the ADNP microtubule end binding protein motif, namely, the neuroprotective NAP (NAPVSIPQ), was found to enhance autophagy while protecting microtubules and augmenting ADNP's association with both systems. Thus, linking autophagy and ADNP is proposed as a major target for intervention in brain diseases from autism to Alzheimer's disease (AD) and our findings introduce autophagy as a possible novel target for treating schizophrenia.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Trastorno Autístico/metabolismo , Autofagia , Encéfalo/metabolismo , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/fisiología , Esquizofrenia/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Trastorno Autístico/fisiopatología , Femenino , Humanos , Masculino , Esquizofrenia/fisiopatología
15.
Nanomedicine ; 17: 359-379, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30759369

RESUMEN

Restrained drug delivery due to the blood-brain barrier (BBB) considerably limits options for the treatment of brain pathologies. The utilization of nanoparticulate (NP) carriers has been proposed as a solution. The development strategies need to address the important hurdle of NP passage across the BBB as well as the altered cellular up-take due to the pathophysiological changes of the damaged or diseased tissue as well as immunological and toxicological aspects of nanomedicine penetration. This review therefore scopes to: 1) outline the state-of-the art knowledge on BBB passage, 2) address the significant influence of pathological conditions on nanoparticulate drug delivery, and, 3) highlight the largely neglected role of the extracellular matrix (ECM). Interactions of the nanosystem with biological barriers, cells and ECM in the milieu of brain pathologies are critically discussed in order to present a holistic overview of the advances and pits of nanomedicine applications in brain disease.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalopatías/tratamiento farmacológico , Preparaciones de Acción Retardada/metabolismo , Matriz Extracelular/metabolismo , Nanopartículas/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Encefalopatías/metabolismo , Encefalopatías/patología , Sistemas de Liberación de Medicamentos/métodos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Humanos , Neurofarmacología
16.
J Neurosci Res ; 95(1-2): 652-660, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27870441

RESUMEN

Discovered in our laboratory, activity-dependent neuroprotective protein (ADNP) interacts with key regulatory proteins, including the chromatin remodeling complex SWI/SNF, proteins associated with RNA splicing, RNA translation, microtubule dynamics, and autophagy. ADNP regulates > 400 genes during mouse embryonic development and is essential for neural tube closure. ADNP key functions extend from mice to men, with mutations causing ADNP-related ID/autism syndrome, also known as the Helsmoortel-Van der Aa syndrome. ADNP mRNA increases in lymphocytes derived from schizophrenia patients and in patients suffering from mild cognitive impairment (MCI) and further increases in Alzheimer's disease patients compared with controls. Serum ADNP levels correlate with IQ. NAP (davunetide), an ADNP snippet drug candidate, protects cognition in patients suffering from amnestic MCI preceding Alzheimer's disease and significantly enhances functional daily activities in schizophrenia patients toward future development. It is important to note that ADNP is sexually regulated in the brains of birds, mice, and men and in lymphocytes of patients suffering from schizophrenia. ADNP haploinsufficiency in mice results in significantly decreased axonal transport (with male-female differences) changes in gene expression in a sex-dependent manner, including key regulatory mechanisms during brain and heart development and function and behavioral outcomes. These findings pave the path for better understanding of brain function through the prism of sex differences. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Trastorno Autístico/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/metabolismo , Caracteres Sexuales , Factores de Edad , Enfermedad de Alzheimer/patología , Animales , Trastorno Autístico/patología , Encéfalo/metabolismo , Humanos , Esquizofrenia/patología
17.
Biol Chem ; 397(3): 177-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25955282

RESUMEN

Fifteen years ago we discovered activity-dependent neuroprotective protein (ADNP), and showed that it is essential for brain formation/function. Our protein interaction studies identified ADNP as a member of the chromatin remodeling complex, SWI/SNF also associated with alternative splicing of tau and prediction of tauopathy. Recently, we have identified cytoplasmic ADNP interactions with the autophagy regulating microtubule-associated protein 1 light chain 3 (LC3) and with microtubule end-binding (EB) proteins. The ADNP-EB-binding SIP domain is shared with the ADNP snippet drug candidate, NAPVSIPQ termed NAP (davunetide). Thus, we identified a precise target for ADNP/NAP (davunetide) neuroprotection toward improved drug development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Trastorno Autístico/tratamiento farmacológico , Citoesqueleto/efectos de los fármacos , Descubrimiento de Drogas , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroprotección/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Autofagia/efectos de los fármacos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Mapas de Interacción de Proteínas/efectos de los fármacos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología
18.
Cytoskeleton (Hoboken) ; 81(1): 16-23, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572043

RESUMEN

With 50 years to the original discovery of Tau, I gave here my perspective, looking through the prism of activity-dependent neuroprotective protein (ADNP), and the influence of sex. My starting point was vasoactive intestinal peptide (VIP), a regulator of ADNP. I then moved to the original discovery of ADNP and its active neuroprotective site, NAP, drug candidate, davunetide. Tau-ADNP-NAP interactions were then explained with emphasis on sex and future translational medicine.

19.
J Mol Neurosci ; 74(1): 15, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282129

RESUMEN

Activity-dependent neuroprotective protein (ADNP) is essential for neurodevelopment and de novo mutations in ADNP cause the ADNP syndrome. From brain pathologies point of view, tauopathy has been demonstrated at a young age, implying stunted development coupled with early/accelerated neurodegeneration. Given potential genotype-phenotype differences and age-dependency, we have assessed here a cohort of 15 individuals (1-27-year-old), using 1-3 longitudinal parent (caretaker) interview/s (Vineland 3 questionnaire) over several years. Our results indicated developmental delays, or even developmental arrests, coupled with potential spurts of development at early ages. Severe outcomes correlated with the truncating high impact mutation, in other words, the remaining mutated protein length as well as with the tested individual age, corroborating the hypothesis of developmental delays coupled with accelerated aging. A significant correlation was noted between mutated protein length and communication, implying a high impact of ADNP on communicative skills. Additionally, correlations were discovered between the two previously described epi-genetic signatures in ADNP emphasizing aberrant acquisition of motor behaviors, with truncating mutations around the nuclear localization signal being mostly affected. Finally, all individuals seem to acquire an age equivalent of 1-6 years, requiring disease modification treatment, such as the ADNP-derived drug candidate, NAP (davunetide), which has recently shown efficacy in women suffering from the neurodegenerative disorder, progressive supranuclear palsy (PSP), a late-onset tauopathy.


Asunto(s)
Proteínas de Homeodominio , Tauopatías , Masculino , Humanos , Femenino , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Mutación , Síndrome , Proteínas de Homeodominio/genética , Fenotipo , Genotipo , Proteínas del Tejido Nervioso/genética
20.
J Biol Chem ; 287(48): 40173-85, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23071114

RESUMEN

BACKGROUND: ADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2? RESULTS: Down-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the ß-globin locus control region. CONCLUSION: ADNPs are novel molecular regulators of erythropoiesis. SIGNIFICANCE: New regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse ß-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased ß-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of ß-globin expression.


Asunto(s)
Células Eritroides/citología , Eritropoyesis , Evolución Molecular , Familia de Multigenes , Proteínas del Tejido Nervioso/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Línea Celular Tumoral , Células Eritroides/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA