Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Opt Lett ; 44(15): 3893-3896, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368995

RESUMEN

A new metric is used to improve the contrast of birefringent structures in biological tissue using polarization-sensitive optical coherence tomography. This metric, optic axis uniformity (OAxU), is based on the optic axis of birefringence and quantifies the uniformity of the optic axis direction. OAxU provides surprisingly strong contrast for fibrous structures such as muscle and the retinal nerve fiber layer (RNFL). We used OAxU for automatic segmentation of the RNFL in human eyes. From the segmentation, en face images of RNFL thickness and RNFL birefringence were created. The measured birefringence values are consistent with earlier reports.

2.
Ophthalmologica ; 241(3): 143-153, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30227415

RESUMEN

PURPOSE: This prospective case series is aimed at exploring optical coherence tomographic angiography (OCT-A) as a treatment monitoring tool in patients treated for retinal angiomatous proliferation (RAP). METHODS: Twelve treatment-naïve RAP patients were included, with a median age of 79 years (range 65-90). Patients were imaged with an experimental 1,040-nm swept-source phase-resolved OCT-A instrument before and after treatment. Treatment consisted of either intravitreal bevacizumab or triamcinolone injections with or without photodynamic therapy (PDT). Abnormal blood flow after treatment was graded as increased, unchanged, decreased, or resolved. RESULTS: OCT-A images before and after treatment could be obtained in 9 patients. The median follow-up period was 10 weeks (range 5-19). After various treatments, the RAP lesion resolved in 7 patients, in 1 patient the OCT-A depicted decreased flow in the lesion, and 1 patient showed unchanged abnormal blood flow. Monotherapy with intravitreal bevacizumab injections resolved RAP in 1 out of 2 patients. Combined therapy of bevacizumab with PDT resolved RAP in 6 out of 7 patients. CONCLUSIONS: OCT-A visualized resolution of abnormal blood flow in 7 out of 9 RAP patients after various short-term treatment sequences. OCT-A may become an important noninvasive monitoring tool for optimizing treatment strategies in RAP patients.


Asunto(s)
Bevacizumab/administración & dosificación , Angiografía con Fluoresceína/métodos , Degeneración Macular/tratamiento farmacológico , Fotoquimioterapia/métodos , Neovascularización Retiniana/tratamiento farmacológico , Tomografía de Coherencia Óptica/métodos , Triamcinolona/administración & dosificación , Anciano , Anciano de 80 o más Años , Inhibidores de la Angiogénesis/administración & dosificación , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Femenino , Estudios de Seguimiento , Fondo de Ojo , Glucocorticoides/administración & dosificación , Humanos , Inyecciones Intravítreas , Degeneración Macular/diagnóstico , Masculino , Fármacos Fotosensibilizantes/uso terapéutico , Estudios Prospectivos , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Retina/patología , Neovascularización Retiniana/diagnóstico , Resultado del Tratamiento , Agudeza Visual
3.
Opt Express ; 22(10): 12038-45, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24921323

RESUMEN

Spectral broadening in gas-filled hollow-core fibers is discussed for sulfur hexafluoride, a molecular gas with Raman activity. Experimental results for compressed pulses are presented for input pulses longer than the Raman period and shorter than the dephasing time at a central wavelength of 800 nm and 400 nm, respectively. For both wavelengths we compress the pulses by a factor of three and maintain a good pulse quality. The obtained results are of interest for compressing pulses generated with Yb doped lasers.

4.
Transl Vis Sci Technol ; 9(11): 21, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33150047

RESUMEN

Purpose: The purpose of this paper was to determine the architecture of the collagen fibers of the peripapillary sclera, the retinal nerve fiber layer (RNFL), and Henle's fiber layer in vivo in 3D using polarization-sensitive optical coherence tomography (PS-OCT). Methods: Seven healthy volunteers were imaged with our in-house built PS-OCT system. PS-OCT imaging included intensity, local phase retardation, relative optic axis, and optic axis uniformity (OAxU). Differential Mueller matrix calculus was used for the first time in ocular tissues to visualize local orientations that varied with depth, incorporating a correction method for the fiber orientation in preceding layers. Results: Scleral collagen fiber orientation images clearly showed an inner layer with an orientation parallel to the RNFL orientation, and a deeper layer where the collagen was circularly oriented. RNFL orientation images visualized the nerve fibers leaving the optic nerve head (ONH) in a radial pattern. The phase retardation and orientation of Henle's fiber layer were visualized locally for the first time. Conclusions: PS-OCT successfully showed the orientation of the retinal nerve fibers, sclera, and Henle's fiber layer, and is to the extent of our knowledge the only technique able to do so in 3D in vivo. Translational Relevance: In vivo 3D imaging of scleral collagen architecture and the retinal neural fibrous structures can improve our understanding of retinal biomechanics and structural alterations in different disease stages of myopia and glaucoma.


Asunto(s)
Disco Óptico , Tomografía de Coherencia Óptica , Birrefringencia , Humanos , Disco Óptico/diagnóstico por imagen , Células Ganglionares de la Retina , Esclerótica/diagnóstico por imagen
5.
Transl Vis Sci Technol ; 9(4): 13, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32818100

RESUMEN

Purpose: Subretinal fibrosis (SRFib) is an important cause of permanent loss-of-vision diseases with submacular neovascularization, but a reliable diagnostic method is currently missing. This study uses polarization-sensitive optical coherence tomography (PS-OCT) to detect SRFib within retinal lesions by measurement of its birefringent collagen fibers. Methods: Twenty-five patients were enrolled with retinal pathology in one or both eyes containing (1) suspected SRFib, (2) lesions suspected not to be fibrotic, or (3) lesions with doubtful presence of SRFib. All eyes were evaluated for SRFIb using conventional diagnostics by three retinal specialists. PS-OCT images were visually evaluated for SRFib based on cumulative phase retardation, local birefringence, and optic axis uniformity. Results: Twenty-nine eyes from 22 patients were scanned successfully. In 13 eyes, SRFib was diagnosed by all retinal specialists; of these, 12 were confirmed by PS-OCT and one was inconclusive. In nine eyes, the retinal specialists expected no SRFib, which was confirmed by PS-OCT in all cases. In seven eyes, the retinal specialists' evaluations were inconsistent with regard to the presence of SRFib. PS-OCT confirmed the presence of SRFib in four of these eyes and the absence of SRFib in two eyes and was inconclusive in one eye. Conclusions: In 21 out of 22 eyes, PS-OCT confirmed the evaluation of retinal specialists regarding the presence of SRFib. PS-OCT provided additional information to distinguish SRFib from other tissues within subretinal neovascular lesions in 6 out of 7 eyes. Translational Relevance: PS-OCT can identify and quantify SRFib in doubtful cases for which a reliable diagnosis is currently lacking.


Asunto(s)
Retina , Tomografía de Coherencia Óptica , Birrefringencia , Fibrosis , Angiografía con Fluoresceína , Humanos , Retina/diagnóstico por imagen
6.
Biomed Opt Express ; 10(11): 5470-5485, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31799025

RESUMEN

Quantitative velocity estimations in optical coherence tomography requires the estimation of the axial and lateral flow components. Optical coherence tomography measures the depth resolved complex field reflected from a sample. While the axial velocity component can be determined from the Doppler shift or phase shift between a pair of consecutive measurements at the same location, the estimation of the lateral component for in vivo applications is still challenging. One approach to determine lateral velocity is multiple simultaneous measurements at different angles. In another approach the lateral component can be retrieved through repeated measurements at (nearly) the same location by an analysis of the decorrelation over time. In this paper we follow the latter approach. We describe a model for the complex field changes between consecutive measurements and use it to predict the uncertainties for amplitude-based, phase-based and complex algorithms. The uncertainty of the flow estimations follows from a statistical analysis and is determined by the number of available measurements and the applied analysis method. The model is verified in phantom measurements and the dynamic range of velocity estimations is investigated. We demonstrate that phase-based and complex (phasor) based lateral flow estimation methods are superior to amplitude-based algorithms.

7.
Biomed Opt Express ; 10(3): 1297-1314, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30891347

RESUMEN

Quantitative flow velocimetry in Optical Coherence Tomography is used to determine both the axial and lateral flow component at the level of individual voxels. The lateral flow is determined by analyzing the statistical properties of reflected electro-magnetic fields for repeated measurements at (nearly) the same location. The precision or statistical fluctuation of the quantitative velocity estimation depends on the number of repeated measurements and the method to determine quantitative flow velocity. In this paper, both a method to determine quantitative flow velocity and a model for the prediction of the statistical fluctuations of velocity estimations are developed to analyze and optimize the estimation precision for phase-based velocimetry methods. The method and model are validated by phantom measurements in a bulk scattering medium as well as in intralipid solution in a capillary. Based on the model, the number of repeated measurements to achieve a certain velocimetry precision is predicted.

8.
Biomed Opt Express ; 10(5): 2213-2226, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31143490

RESUMEN

Phase-based OCT angiography of retinoblastoma regression patterns with a novel handheld 1050 nm clinical imaging system is demonstrated for the first time in children between 0 and 4 years old under general anesthesia. Angiography is mapped at OCT resolution by flow detection at every pixel with en-face projection from the volume between nerve fiber layer and retinal pigment epithelium. We show a striking difference between blood vasculature of healthy retina, and retinoblastoma regression patterns after chemotherapy, as well as varying complexity of abnormal vasculature in regression patterns types 2, 3, and 4. We demonstrate abnormal, tortuous and prominent vasculature in type 3 regression patterns having the highest risk of tumor recurrences and a lower probability to reduction into flat scars. The ability to visualize 3-D angiography might offer new insights in understanding of retinoblastoma development and its response to therapy.

9.
Biomed Opt Express ; 10(6): 3070-3091, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259075

RESUMEN

Remodeling of tissue, such as airway smooth muscle (ASM) and extracellular matrix, is considered a key feature of airways disease. No clinically accepted diagnostic method is currently available to assess airway remodeling or the effect of treatment modalities such as bronchial thermoplasty in asthma, other than invasive airway biopsies. Optical coherence tomography (OCT) generates cross-sectional, near-histological images of airway segments and enables identification and quantification of airway wall layers based on light scattering properties only. In this study, we used a custom motorized OCT probe that combines standard and polarization sensitive OCT (PS-OCT) to visualize birefringent tissue in vivo in the airway wall of a patient with severe asthma in a minimally invasive manner. We used optic axis uniformity (OAxU) to highlight the presence of uniformly arranged fiber-like tissue, helping visualizing the abundance of ASM and connective tissue structures. Attenuation coefficient images of the airways are presented for the first time, showing superior architectural contrast compared to standard OCT images. A novel segmentation algorithm was developed to detect the surface of the endoscope sheath and the surface of the tissue. PS-OCT is an innovative imaging technique that holds promise to assess airway remodeling including ASM and connective tissue in a minimally invasive, real-time manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA