Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 560(7717): 209-213, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089919

RESUMEN

Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majorana-type end states21.

2.
Proc Natl Acad Sci U S A ; 117(26): 14838-14842, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541061

RESUMEN

The reliability by which molecular motor proteins convert undirected energy input into directed motion or transport has inspired the design of innumerable artificial molecular motors. We have realized and investigated an artificial molecular motor applying scanning tunneling microscopy (STM), which consists of a single acetylene (C2H2) rotor anchored to a chiral atomic cluster provided by a PdGa(111) surface that acts as a stator. By breaking spatial inversion symmetry, the stator defines the unique sense of rotation. While thermally activated motion is nondirected, inelastic electron tunneling triggers rotations, where the degree of directionality depends on the magnitude of the STM bias voltage. Below 17 K and 30-mV bias voltage, a constant rotation frequency is observed which bears the fundamental characteristics of quantum tunneling. The concomitantly high directionality, exceeding 97%, implicates the combination of quantum and nonequilibrium processes in this regime, being the hallmark of macroscopic quantum tunneling. The acetylene on PdGa(111) motor therefore pushes molecular machines to their extreme limits, not just in terms of size, but also regarding structural precision, degree of directionality, and cross-over from classical motion to quantum tunneling. This ultrasmall motor thus opens the possibility to investigate in operando effects and origins of energy dissipation during tunneling events, and, ultimately, energy harvesting at the atomic scales.

3.
Nature ; 534(7609): 676-9, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357755

RESUMEN

When a gecko moves on a ceiling it makes use of adhesion and stiction. Stiction--static friction--is experienced on microscopic and macroscopic scales and is related to adhesion and sliding friction. Although important for most locomotive processes, the concepts of adhesion, stiction and sliding friction are often only empirically correlated. A more detailed understanding of these concepts will, for example, help to improve the design of increasingly smaller devices such as micro- and nanoelectromechanical switches. Here we show how stiction and adhesion are related for a liquid drop on a hexagonal boron nitride monolayer on rhodium, by measuring dynamic contact angles in two distinct states of the solid-liquid interface: a corrugated state in the absence of hydrogen intercalation and an intercalation-induced flat state. Stiction and adhesion can be reversibly switched by applying different electrochemical potentials to the sample, causing atomic hydrogen to be intercalated or not. We ascribe the change in adhesion to a change in lateral electric field of in-plane two-nanometre dipole rings, because it cannot be explained by the change in surface roughness known from the Wenzel model. Although the change in adhesion can be calculated for the system we study, it is not yet possible to determine the stiction at such a solid-liquid interface using ab initio methods. The inorganic hybrid of hexagonal boron nitride and rhodium is very stable and represents a new class of switchable surfaces with the potential for application in the study of adhesion, friction and lubrication.


Asunto(s)
Compuestos de Boro/química , Rodio/química , Adhesividad , Animales , Electricidad , Fricción , Hidrógeno/química , Locomoción , Lubrificación , Humectabilidad
4.
Chimia (Aarau) ; 76(3): 203-211, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069734

RESUMEN

On-surface synthesis has become a powerful approach to produce low-dimensional carbon-based nanostructures with atomistic precision. A large variety of analytical tools and methods are available to provide efficient monitoring of on-surface reactions, among which, scanning probe microscopy (SPM) has proven to be particularly efficient to characterize reaction intermediates and products down to the atomic scale. Nevertheless, due to limited temporal resolution, difficulties to explore the full temperature range, and lack of identifying the chemical environment of all elements involved in on-surface processes, SPM is ideally complemented with temperature programmed X-ray photoelectron spectroscopy (TP-XPS). In this short review, we aim to unveil some of the capabilities of synchrotron based TP-XPS reporting on our own research on Ullmann-type on-surface coupling reactions.

5.
Nano Lett ; 20(9): 6429-6436, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32787158

RESUMEN

Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically nontrivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, achieved by incorporating specifically designed precursor monomers. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Mean-field Hubbard-based modeling of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic, or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route toward the fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.

6.
J Am Chem Soc ; 142(3): 1147-1152, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31904953

RESUMEN

The on-surface reactions of 10-bromo-10'-(2,6-dimethylphenyl)-9,9'-bianthracene on Au(111) have been investigated by scanning tunneling microscopy and spectroscopy, complemented by theoretical calculations. The reactions afford the synthesis of two open-shell nanographenes (1a and 1b) exhibiting different scenarios of all-carbon magnetism. 1a, an all-benzenoid nanographene with triangulene-like termini, contains a high proportion of zigzag edges which endows it with a low frontier gap and edge-localized states. The dominant reaction product, 1b, is a non-benzenoid nanographene consisting of a single pentagonal ring in a benzenoid framework. The presence of this non-benzenoid topological defect, which alters the bond connectivity in the hexagonal lattice, results in a non-Kekulé nanographene with an unpaired spin, which is detected as a Kondo resonance.

7.
J Am Chem Soc ; 142(22): 10034-10041, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32372644

RESUMEN

The quinoid structure, a resonance structure of benzenoid, gives rise to peculiar chemical reactivity and physical properties. A complete characterization of its geometric and electronic properties on the atomic scale is of vital importance to understand and engineer the chemical and physical properties of quinoid molecules. Here, we report a real-space structural and electronic characterization of quinoid poly(para-phenylene) (PPP) chains by using noncontact atomic force microscopy and scanning tunneling microscopy. Our results reveal that quinoid PPP chains adopt a coplanar adsorption configuration on Cu(111) and host in-gap states near Fermi level. In addition, intra- and interchain hopping of quinoid structure are observed, indicative of a quasiparticle behavior originating from charge-lattice interactions. The experimental results are nicely reproduced by tight-binding calculations. Our study provides a comprehensive understanding of the structural and electronic properties of quinoid PPP chains in real space and may be further extended to address the dynamics of nonlinear excitations in quinoid molecules.

8.
Nature ; 512(7512): 61-4, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25100481

RESUMEN

Over the past two decades, single-walled carbon nanotubes (SWCNTs) have received much attention because their extraordinary properties are promising for numerous applications. Many of these properties depend sensitively on SWCNT structure, which is characterized by the chiral index (n,m) that denotes the length and orientation of the circumferential vector in the hexagonal carbon lattice. Electronic properties are particularly strongly affected, with subtle structural changes switching tubes from metallic to semiconducting with various bandgaps. Monodisperse 'single-chirality' (that is, with a single (n,m) index) SWCNTs are thus needed to fully exploit their technological potential. Controlled synthesis through catalyst engineering, end-cap engineering or cloning strategies, and also tube sorting based on chromatography, density-gradient centrifugation, electrophoresis and other techniques, have delivered SWCNT samples with narrow distributions of tube diameter and a large fraction of a predetermined tube type. But an effective pathway to truly monodisperse SWCNTs remains elusive. The use of template molecules to unambiguously dictate the diameter and chirality of the resulting nanotube holds great promise in this regard, but has hitherto had only limited practical success. Here we show that this bottom-up strategy can produce targeted nanotubes: we convert molecular precursors into ultrashort singly capped (6,6) 'armchair' nanotube seeds using surface-catalysed cyclodehydrogenation on a platinum (111) surface, and then elongate these during a subsequent growth phase to produce single-chirality and essentially defect-free SWCNTs with lengths up to a few hundred nanometres. We expect that our on-surface synthesis approach will provide a route to nanotube-based materials with highly optimized properties for applications such as light detectors, photovoltaics, field-effect transistors and sensors.

9.
Angew Chem Int Ed Engl ; 59(41): 18179-18183, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32589816

RESUMEN

Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on-surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9-ethynylphenanthrene (9-EP) upon annealing to 500 K on the chiral Pd3 -terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9-EP propellers. The observed behavior strongly contrasts the reaction of 9-EP on the chiral Pd1 -terminated PdGa{111} surfaces, where 9-EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.

10.
Angew Chem Int Ed Engl ; 59(29): 12041-12047, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32301570

RESUMEN

Triangular zigzag nanographenes, such as triangulene and its π-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer. The chemical structures of the dimers have been characterized by bond-resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet-triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.

11.
Angew Chem Int Ed Engl ; 59(40): 17594-17599, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32592432

RESUMEN

We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.

12.
J Am Chem Soc ; 141(27): 10621-10625, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31241927

RESUMEN

The electronic and magnetic properties of nanographenes strongly depend on their size, shape and topology. While many nanographenes present a closed-shell electronic structure, certain molecular topologies may lead to an open-shell structure. Triangular-shaped nanographenes with zigzag edges, which exist as neutral radicals, are of considerable interest both in fundamental science and for future technologies aimed at harnessing their intrinsic high-spin magnetic ground states for spin-based operations and information storage. Their synthesis, however, is extremely challenging owing to the presence of unpaired electrons, which confers them with enhanced reactivity. We report a combined in-solution and on-surface synthesis of π-extended triangulene, a non-Kekulé nanographene with the structural formula C33H15, consisting of ten benzene rings fused in a triangular fashion. The distinctive topology of the molecule entails the presence of three unpaired electrons that couple to form a spin quartet ground state. The structure of individual molecules adsorbed on an inert gold surface is confirmed through ultrahigh-resolution scanning tunneling microscopy. The electronic properties are studied via scanning tunneling spectroscopy, wherein unambiguous spectroscopic signatures of the spin-split singly occupied molecular orbitals are found. Detailed insight into its properties is obtained through tight-binding, density functional and many-body perturbation theory calculations, with the latter providing evidence that π-extended triangulene retains its open-shell quartet ground state on the surface. Our work provides unprecedented access to open-shell nanographenes with high-spin ground states, potentially useful in carbon-based spintronics.

13.
Chemistry ; 25(52): 12074-12082, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31190412

RESUMEN

A bottom up method for the synthesis of unique tetracene-based nanoribbons, which incorporate cyclobutadiene moieties as linkers between the acene segments, is reported. These structures were achieved through the formal [2+2] cycloaddition reaction of ortho-functionalized tetracene precursor monomers. The formation mechanism and the electronic and magnetic properties of these nanoribbons were comprehensively studied by means of a multitechnique approach. Ultra-high vacuum scanning tunneling microscopy showed the occurrence of metal-coordinated nanostructures at room temperature and their evolution into nanoribbons through formal [2+2] cycloaddition at 475 K. Frequency-shift non-contact atomic force microscopy images clearly proved the presence of bridging cyclobutadiene moieties upon covalent coupling of activated tetracene molecules. Insight into the electronic and vibrational properties of the so-formed ribbons was obtained by scanning tunneling microscopy, Raman spectroscopy, and theoretical calculations. Magnetic properties were addressed from a computational point of view, allowing us to propose promising candidates to magnetic acene-based ribbons incorporating four-membered rings. The reported findings will increase the understanding and availability of new graphene-based nanoribbons with high potential in future spintronics.

14.
Nano Lett ; 15(8): 5185-90, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26177075

RESUMEN

We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.

15.
Inorg Chem ; 54(3): 1159-64, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25516067

RESUMEN

The (111) surface of single-crystal NaAu(2) is a model for catalytically active, powdered NaAu(2). We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps, however, cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminated structure, and scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments.

16.
Sci Technol Adv Mater ; 16(1): 015005, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27877755

RESUMEN

The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 µA was drawn from the brazed nanotubes at an applied electric field of 0.6 V µm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

17.
Angew Chem Int Ed Engl ; 54(13): 3902-6, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25655521

RESUMEN

Intrinsically chiral surfaces of intermetallic compounds are shown to be novel materials for enantioselective processes. Their advantage is the significantly higher thermal and chemical stability, and therefore their extended application range for catalyzed chiral reactions compared to surfaces templated with chiral molecular modifiers or auxiliaries. On the Pd1 -terminated PdGa(111) surface, room-temperature adsorption of a small prochiral molecule (9-ethynylphenanthrene) leads to exceptionally high enantiomeric excess ratios of up to 98 %. Our findings highlight the great potential of intrinsically chiral intermetallic compounds for the development of novel, enantioselective catalysts that can be operated at high temperatures and potentially also in harsh chemical environments.


Asunto(s)
Metales/química , Adsorción , Catálisis , Cristalización , Galio/química , Calor , Indicadores y Reactivos , Microscopía Electrónica de Transmisión de Rastreo , Modelos Moleculares , Paladio , Fenantrenos/química , Estereoisomerismo
18.
J Am Chem Soc ; 136(33): 11792-8, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25068445

RESUMEN

Intermetallic compounds are a promising class of materials as stable and selective heterogeneous catalysts. Here, the (111) and (-1-1-1) single crystal surfaces of the PdGa intermetallic compound were studied as model catalysts with regard to the selective hydrogenation of acetylene (C2H2) to ethylene (C2H4). The distinct atomic surface structures exhibit isolated active centers of single atomic and three atomic Pd ensembles, respectively. For the two prototypal model catalyst surfaces, the adsorption sites and configurations for hydrogen (H2), acetylene, and ethylene were investigated by combining scanning tunneling microscopy, temperature-programmed desorption, and ab initio modeling. The topmost Pd surface atoms provide the preferred adsorption sites for all studied molecules. The structural difference of the Pd ensembles has a significant influence on the adsorption energy and configuration of C2H2, while the influence of the ensemble structure is weak for C2H4 and H2 adsorption. To approach the question of catalytic performance, we simulated the reaction pathways for the heterogeneous catalytic hydrogenation of acetylene on the two surfaces by means of density functional theory. Due to the geometrical separation of the Pd sites on the surfaces, the steric approach of the reactants (H and C2Hx) was found to be of importance to the energetics of the reaction. The presented study gives a direct comparison of binding properties of catalytic Pd on-top sites vs three-fold Pd hollow sites and is therefore of major relevance to the knowledge-based design of highly selective hydrogenation catalysts.


Asunto(s)
Acetileno/química , Aleaciones/química , Etilenos/síntesis química , Adsorción , Catálisis , Etilenos/química , Galio/química , Hidrogenación , Paladio/química , Tamaño de la Partícula , Teoría Cuántica , Propiedades de Superficie
19.
Phys Chem Chem Phys ; 16(24): 12374-84, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24828002

RESUMEN

Experiment and computer simulations were conducted in order to study the adsorption of the phthalocyanine molecules H2Pc and CuPc on the h-BN/Rh(111) nanomesh. We combine STM investigations with the exploration of the potential energy surface as resulting from density functional theory calculations. Both approaches indicate a pronounced adsorption selectivity in the so called pore regions of the h-BN nanomesh, whereas the adsorption energy landscape in the pore turns out to be very shallow. This is seen by the inability to image the molecule stably at 77 K by scanning tunneling microscopy. Understanding the nature of the binding by rationalizing the site-selectivity and the mobility of the molecules is quite a challenge for both experiment and theory. In particular, we observe that the choice of the functional in the DFT description is crucial to be able to discriminate among adsorption sites that are very close in energy and to resolve low energy barriers. Our study reveals how the shape of the corrugated h-BN layer is the dominant factor that determines the subtle features of the potential energy surface for the adsorption of phthalocyanine.

20.
Adv Sci (Weinh) ; 11(16): e2309081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353319

RESUMEN

Homogenous enantioselective catalysis is nowadays the cornerstone in the manufacturing of enantiopure substances, but its technological implementation suffers from well-known impediments like the lack of endurable catalysts exhibiting long-term stability. The catalytically active intermetallic compound Palladium-Gallium (PdGa), conserving innate bulk chirality on its surfaces, represent a promising system to study asymmetric chemical reactions by heterogeneous catalysis, with prospective relevance for industrial processes. Here, this work investigates the adsorption of 10,10'-dibromo-9,9'-bianthracene (DBBA) on the PdGa:A( 1 ¯ 1 ¯ 1 ¯ $\bar{1}\bar{1}\bar{1}$ ) Pd3-terminated surface by means of scanning tunneling microscopy (STM) and spectroscopy (STS). A highly enantioselective adsorption of the molecule evolving into a near 100% enantiomeric excess below room temperature is observed. This exceptionally high enantiomeric excess is attributed to temperature activated conversion of the S to the R chiral conformer. Tip-induced bond cleavage of the R conformer shows a very high regioselectivity of the DBBA debromination. The experimental results are interpreted by density functional theory atomistic simulations. This work extends the knowledge of chirality transfer onto the enantioselective adsorption of non-planar molecules and manifests the ensemble effect of PdGa surfaces resulting in robust regioselective debromination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA