Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(4): e5086, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110293

RESUMEN

Fluorine MRI is finding wider acceptance in theranostics applications where imaging of 19 F hotspots of fluorinated contrast material is central. The essence of such applications is to capture ghosting-artifact-free images of the inherently low MR response under clinically viable conditions. To serve this purpose, this work introduces the balanced spiral spectroscopic imaging (BaSSI) sequence, which is implemented on a 3.0 T clinical scanner and is capable of generating 19 F hotspot images in an efficient manner. The sequence utilizes an all-phase-encoded pseudo-spiral k-space trajectory, enabling the acquisition of broadband (80 ppm) fluorine spectra free from chemical shift ghosting. BaSSI can acquire a 64 × 64 image with 1 mm × 1 mm voxels in just 14 s, significantly outperforming typical MRSI sequences used in 1 H or 31 P imaging. The study employed in silico characterization to verify essential design choices such as the excitation pulse, as well as to identify the boundaries of the parameter space explored for optimization. BaSSI's performance was further benchmarked against the 3D ultrashort-echo-time balanced steady-state free precession (3D UTE BSSFP) sequence, a well established method used in 19 F MRI, in vitro. Both sequences underwent extensive optimization through exploration of a wide parameter space on a small phantom containing 10 µL of non-diluted bulk perfluorooctylbromide (PFOB) prior to comparative experiments. Subsequent to optimization, BaSSI and 3D UTE BSSFP were employed to capture images of small non-diluted bulk PFOB samples (0.10 and 0.05 µL), with variations in the number of signal averages, and thus the total scan time, in order to assess the detection sensitivities of the sequences. In these experiments, the detection sensitivity was evaluated using the Rose criterion (Rc ), which provides a quantitative metric for assessing object visibility. The study further demonstrated BaSSI's utility as a (pre)clinical tool through postmortem imaging of polymer microspheres filled with PFOB in a BALB/c mouse. Anatomic localization of 19 F hotspots was achieved by denoising raw data obtained with BaSSI using a filter based on the Rose criterion. These data were then successfully registered to 1 H anatomical images. BaSSI demonstrated superior detection sensitivity in the benchmarking analysis, achieving Rc values approximately twice as high as those obtained with the 3D UTE BSSFP method. The technique successfully facilitated imaging and precise localization of 19 F hotspots in postmortem experiments. However, it is important to highlight that imaging 10 mM PFOB in small mice postmortem, utilizing a 48 × 48 × 48 3D scan, demanded a substantial scan time of 1 h and 45 min. Further studies will explore accelerated imaging techniques, such as compressed sensing, to enhance BaSSI's clinical utility.


Asunto(s)
Fluorocarburos , Hidrocarburos Bromados , Ratones , Animales , Flúor , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos
2.
Int J Hyperthermia ; 40(1): 2283388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37994800

RESUMEN

Purpose: A crucial aspect of quality assurance in thermal therapy is periodic demonstration of the heating performance of the device. Existing methods estimate the specific absorption rate (SAR) from the temperature rise after a short power pulse, which yields a biased estimate as thermal diffusion broadens the apparent SAR pattern. To obtain an unbiased estimate, we propose a robust frequency-domain method that simultaneously identifies the SAR as well as the thermal dynamics.Methods: We propose a method consisting of periodic modulation of the FUS power while recording the response with MR thermometry (MRT). This approach enables unbiased measurements of spatial Fourier coefficients that encode the thermal response. These coefficients are substituted in a generic thermal model to simultaneously estimate the SAR, diffusivity, and damping. The method was tested using a cylindrical phantom and a 3 T clinical MR-HIFU system. Three scenarios with varying modulation strategies are chosen to challenge the method. The results are compared to the well-known power pulse technique.Results: The thermal diffusivity is estimated at 0.151 mm2s-1 with a standard deviation of 0.01 mm2s-1 between six experiments. The SAR estimates are consistent between all experiments and show an excellent signal-to-noise ratio (SNR) compared to the well established power pulse method. The frequency-domain method proved to be insensitive to B0-drift and non steady-state initial temperature distributions.Conclusion: The proposed frequency-domain estimation method shows a high SNR and provided reproducible estimates of the SAR and the corresponding thermal diffusivity. The findings suggest that frequency-domain tools can be highly effective at estimating the SAR from (biased) MRT data acquired during periodic power modulation.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Termometría , Difusión Térmica , Temperatura , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
3.
Int J Hyperthermia ; 39(1): 173-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35021942

RESUMEN

OBJECTIVE: To determine resource consumption and total costs for providing magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment to a patient with cancer-induced bone pain (CIBP). METHODS: We conducted a time-driven activity-based costing (TD-ABC) of MR-HIFU treatments for CIBP from a hospital perspective. A European care-pathway (including a macro-, meso-, and micro-level) was designed to incorporate the care-delivery value chain. Time estimates were obtained from medical records and from prospective direct observations. To calculate the capacity cost rate, data from the controlling department of a German university hospital were allocated to the modules of the care pathway. Best- and worst-case scenarios were calculated by applying lower and upper bounds of time measurements. RESULTS: The macro-level care pathway consisted of eight modules (i.e., outpatient consultations, pretreatment imaging, preparation, optimization, sonication, post-treatment, recovery, and anesthesia). The total cost of an MR-HIFU treatment amounted to €5147 per patient. Best- and worst-case scenarios yielded a total cost of €4092 and to €5876. According to cost categories, costs due to equipment accounted for 41% of total costs, followed by costs with personnel (32%), overhead (16%) and materials (11%). CONCLUSION: MR-HIFU is an emerging noninvasive treatment for alleviating CIBP, with increasing evidence on treatment efficacy. This costing study can support MR-HIFU reimbursement negotiations and facilitate the adoption of MR-HIFU as first-line treatment for CIBP. The present TD-ABC model creates the opportunity of benchmarking the provision of MR-HIFU to bone tumor.Key pointsMagnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is an emerging noninvasive treatment modality for alleviating cancer-induced bone pain (CIBP).From a hospital perspective, the total cost of MR-HIFU amounted to €5147 per treatment.This time-driven activity-based costing model creates the opportunity of benchmarking the provision of MR-HIFU to bone tumor.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias Óseas/complicaciones , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/terapia , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Estudios Prospectivos
4.
J Autoimmun ; 124: 102726, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555678

RESUMEN

The ability of regulatory T (Treg) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired Treg cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered Treg cell migration in RA. Results were verified by migration assays and Western blot analysis of CD4+ T cells from RA patients and from mice with collagen type II induced arthritis. Kinome profiling of CD4+ T cells from RA patients revealed significantly altered post-translational phosphorylation of kinase related proteins, including G-protein-signaling modulator 2 (GPSM2), protein tyrosine kinase 6 (PTK6) and vitronectin precursor (VTNC). These proteins have not been associated with RA until now. We found that GPSM2 expression is reduced in CD4+ T cells from RA patients and is significantly downregulated in experimental autoimmune arthritis following immunization of mice with collagen type II. Interestingly, GPSM2 acts as a promoter of Treg cell migration in healthy individuals. Treatment of RA patients with interleukin-6 receptor (IL-6R) blocking antibodies restores GPSM2 expression, thereby improving Treg cell migration. Our study highlights the potential of multiplex kinase activity arrays as a tool for the identification of RA-related proteins which could serve as targets for novel treatments.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Bloqueadores/metabolismo , Movimiento Celular , Células Cultivadas , Colágeno Tipo II/inmunología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos DBA , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de Interleucina-6/inmunología
5.
Int J Hyperthermia ; 38(1): 1174-1187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34374624

RESUMEN

PURPOSE: This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS: Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS: The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS: The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Hipertermia Inducida , Algoritmos , Animales , Hipertermia , Imagen por Resonancia Magnética , Perfusión , Porcinos
6.
Magn Reson Med ; 83(3): 962-973, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31544289

RESUMEN

PURPOSE: To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS: Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS: In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION: FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.


Asunto(s)
Pierna/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Algoritmos , Voluntarios Sanos , Ultrasonido Enfocado de Alta Intensidad de Ablación , Calor , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Protones , Reproducibilidad de los Resultados , Termografía , Termometría
7.
Int J Hyperthermia ; 37(1): 711-741, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579419

RESUMEN

The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.


Asunto(s)
Hipertermia Inducida , Neoplasias , Calefacción , Calor , Humanos , Neoplasias/terapia , Tecnología
8.
Int J Hyperthermia ; 37(1): 786-798, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32619373

RESUMEN

Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Imagen por Resonancia Magnética Intervencional , Animales , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética , Páncreas/diagnóstico por imagen , Páncreas/cirugía , Porcinos
9.
Proc Natl Acad Sci U S A ; 114(24): E4802-E4811, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28566498

RESUMEN

Several thermal-therapy strategies such as thermal ablation, hyperthermia-triggered drug delivery from temperature-sensitive liposomes (TSLs), and combinations of the above were investigated in a rhabdomyosarcoma rat tumor model (n = 113). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) was used as a noninvasive heating device with precise temperature control for image-guided drug delivery. For the latter, TSLs were prepared, coencapsulating doxorubicin (dox) and [Gd(HPDO3A)(H2O)], and injected in tumor-bearing rats before MR-HIFU treatment. Four treatment groups were defined: hyperthermia, ablation, hyperthermia followed by ablation, or no HIFU. The intratumoral TSL and dox distribution were analyzed by single-photon emission computed tomography (SPECT)/computed tomography (CT), autoradiography, and fluorescence microscopy. Dox biodistribution was quantified and compared with that of nonliposomal dox. Finally, the treatment efficacy of all heating strategies plus additional control groups (saline, free dox, and Caelyx) was assessed by tumor growth measurements. All HIFU heating strategies combined with TSLs resulted in cellular uptake of dox deep into the interstitial space and a significant increase of tumor drug concentrations compared with a treatment with free dox. Ablation after TSL injection showed [Gd(HPDO3A)(H2O)] and dox release along the tumor rim, mirroring the TSL distribution pattern. Hyperthermia either as standalone treatment or before ablation ensured homogeneous TSL, [Gd(HPDO3A)(H2O)], and dox delivery across the tumor. The combination of hyperthermia-triggered drug delivery followed by ablation showed the best therapeutic outcome compared with all other treatment groups due to direct induction of thermal necrosis in the tumor core and efficient drug delivery to the tumor rim.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética/métodos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Línea Celular Tumoral , Terapia Combinada , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Femenino , Radioisótopos de Indio , Liposomas , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Ratas , Rabdomiosarcoma/diagnóstico por imagen , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/terapia , Temperatura , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
11.
J Labelled Comp Radiopharm ; 60(6): 286-293, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28317154

RESUMEN

Fibrin deposition is observed in several diseases such as atherosclerosis, deep vein thrombosis, and also tumors, where it contributes to the formation of mature tumor stroma. The aim of this study was to develop a gallium-labeled peptide tracer on the basis of the fibrin-targeting peptide Epep for PET imaging of fibrin deposition. For this purpose, the peptide Epep was modified with a NOTA moiety for radiolabeling with 67 Ga and 68 Ga and compared with the earlier validated 111 In-DOTA-Epep tracer. In vitro binding assays of 67 Ga-NOTA-Epep displayed an enhanced retention as compared to previously published data showing binding of 111 In-DOTA-Epep to human (84.0 ± 0.6 vs 66.6 ± 1.4 %Dose) and mouse derived fibrin clots (83.5 ± 1.7 vs 74.2 ± 2.4% Dose). In vivo blood kinetics displayed a bi-phasic elimination profile (t1/2 ,α  = 2.6 ± 1.0 minutes and t1/2 ,ß  = 15.8 ± 1.3 minutes) and ex vivo biodistribution showed low blood values at 4 hours post injection and a low uptake in nontarget tissue (<0.2 %ID/g; kidneys, 1.9%ID/g). In conclusion, taking into account the ease of radiolabeling and the promising in vitro and in vivo studies, gallium-labeled Epep displays the potential for further development towards a PET tracer for fibrin deposition.


Asunto(s)
Fibrina/metabolismo , Péptidos/química , Péptidos/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Diseño de Fármacos , Femenino , Radioisótopos de Galio , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos con 1 Anillo , Ratones , Péptidos/farmacocinética , Trazadores Radiactivos
12.
Int J Cancer ; 139(4): 824-35, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27062254

RESUMEN

Galectins are carbohydrate binding proteins that function in many key cellular processes. We have previously demonstrated that galectins are essential for tumor angiogenesis and their expression is associated with disease progression. Targeting galectins is therefore a potential anti-angiogenic and anti-cancer strategy. Here, we used a rational approach to generate antibodies against a specific member of this conserved protein family, i.e. galectin-1. We characterized two novel mouse monoclonal antibodies that specifically react with galectin-1 in human, mouse and chicken. We demonstrate that these antibodies are excellent tools to study galectin-1 expression and function in a broad array of biological systems. In a potential diagnostic application, radiolabeled antibodies showed specific targeting of galectin-1 positive tumors. In a therapeutic setting, the antibodies inhibited sprouting angiogenesis in vitro and in vivo, underscoring the key function of galectin-1 in this process.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Galectina 1/metabolismo , Neovascularización Patológica/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Antineoplásicos/química , Antineoplásicos/inmunología , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Epítopos/química , Epítopos/inmunología , Femenino , Galectina 1/antagonistas & inhibidores , Galectina 1/química , Galectina 1/genética , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Ratones , Modelos Moleculares , Conformación Molecular , Imagen Molecular , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/genética , Unión Proteica , Especificidad de la Especie , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Biochim Biophys Acta ; 1838(11): 2807-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25078439

RESUMEN

Temperature-sensitive liposomes (TSLs) loaded with doxorubicin (Dox), and Magnetic Resonance Imaging contrast agents (CAs), either manganese (Mn(2+)) or [Gd(HPDO3A)(H2O)], provide the advantage of drug delivery under MR image guidance. Encapsulated MRI CAs have low longitudinal relaxivity (r1) due to limited transmembrane water exchange. Upon triggered release at hyperthermic temperature, the r1 will increase and hence, provides a means to monitor drug distribution in situ. Here, the effects of encapsulated CAs on the phospholipid bilayer and the resulting change in r1 were investigated using MR titration studies and (1)H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. Our results show that Mn(2+) interacted with the phospholipid bilayer of TSLs and consequently, reduced doxorubicin retention capability at 37°C within the interior of the liposomes over time. Despite that, Mn(2+)-phospholipid interaction resulted in higher r1 increase, from 5.1±1.3mM(-1)s(-1) before heating to 32.2±3mM(-1)s(-1) after heating at 60MHz and 37°C as compared to TSL(Gd,Dox) where the longitudinal relaxivities before and after heating were 1.2±0.3mM(-1)s(-1) and 4.4±0.3mM(-1)s(-1), respectively. Upon heating, Dox was released from TSL(Mn,Dox) and complexation of Mn(2+) to Dox resulted in a similar Mn(2+) release profile. From 25 to 38°C, r1 of [Gd(HPDO3A)(H2O)] gradually increased due to increase transmembrane water exchange, while no Dox release was observed. From 38°C, the release of [Gd(HPDO3A)(H2O)] and Dox was irreversible and the release profiles coincided. By understanding the non-covalent interactions between the MRI CAs and phospholipid bilayer, the properties of the paramagnetic TSLs can be tailored for MR guided drug delivery.

14.
Am J Pathol ; 184(2): 431-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24262753

RESUMEN

Angiogenesis is a hallmark of cancer, and its noninvasive visualization and quantification are key factors for facilitating translational anticancer research. Using four tumor models characterized by different degrees of aggressiveness and angiogenesis, we show that the combination of functional in vivo and anatomical ex vivo X-ray micro-computed tomography (µCT) allows highly accurate quantification of relative blood volume (rBV) and highly detailed three-dimensional analysis of the vascular network in tumors. Depending on the tumor model, rBV values determined using in vivo µCT ranged from 2.6% to 6.0%, and corresponds well with the values assessed using IHC. Using ultra-high-resolution ex vivo µCT, blood vessels as small as 3.4 µm and vessel branches up to the seventh order could be visualized, enabling a highly detailed and quantitative analysis of the three-dimensional micromorphology of tumor vessels. Microvascular parameters such as vessel size and vessel branching correlated very well with tumor aggressiveness and angiogenesis. In rapidly growing and highly angiogenic A431 tumors, the majority of vessels were small and branched only once or twice, whereas in slowly growing A549 tumors, the vessels were much larger and branched four to seven times. Thus, we consider that combining highly accurate functional with highly detailed anatomical µCT is a useful tool for facilitating high-throughput, quantitative, and translational (anti-) angiogenesis and antiangiogenesis research.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen , Microtomografía por Rayos X , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Inmunohistoquímica , Ratones , Neoplasias/patología , Neovascularización Patológica/patología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
NMR Biomed ; 28(11): 1443-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26390040

RESUMEN

Evaluation of high intensity focused ultrasound (HIFU) treatment with MRI is generally based on assessment of the non-perfused volume from contrast-enhanced T1-weighted images. However, the vascular status of tissue surrounding the non-perfused volume has not been extensively investigated with MRI. In this study, cluster analysis of the transfer constant K(trans) and extravascular extracellular volume fraction ve , derived from dynamic contrast-enhanced MRI (DCE-MRI) data, was performed in tumor tissue surrounding the non-perfused volume to identify tumor subregions with distinct contrast agent uptake kinetics. DCE-MRI was performed in CT26.WT colon carcinoma-bearing BALB/c mice before (n = 12), directly after (n = 12) and 3 days after (n = 6) partial tumor treatment with HIFU. In addition, a non-treated control group (n = 6) was included. The non-perfused volume was identified based on the level of contrast enhancement. Quantitative comparison between non-perfused tumor fractions and non-viable tumor fractions derived from NADH-diaphorase histology showed a stronger agreement between these fractions 3 days after treatment (R(2) to line of identity = 0.91) compared with directly after treatment (R(2) = 0.74). Next, k-means clustering with four clusters was applied to K(trans) and ve parameter values of all significantly enhanced pixels. The fraction of pixels within two clusters, characterized by a low K(trans) and either a low or high ve , significantly increased after HIFU. Changes in composition of these clusters were considered to be HIFU induced. Qualitative H&E histology showed that HIFU-induced alterations in these clusters may be associated with hemorrhage and structural tissue disruption. Combined microvasculature and hypoxia staining suggested that these tissue changes may affect blood vessel functionality and thereby tumor oxygenation. In conclusion, it was demonstrated that, in addition to assessment of the non-perfused tumor volume, the presented methodology gives further insight into HIFU-induced effects on tumor vascular status. This method may aid in assessment of the consequences of vascular alterations for the fate of the tissue.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias del Colon/terapia , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Meglumina/farmacocinética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/terapia , Compuestos Organometálicos/farmacocinética , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Simulación por Computador , Medios de Contraste/farmacocinética , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Cinética , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Neovascularización Patológica/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
16.
NMR Biomed ; 28(9): 1125-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26198899

RESUMEN

For the clinical application of high intensity focused ultrasound (HIFU) for thermal ablation of malignant tumors, accurate treatment evaluation is of key importance. In this study, we have employed a multiparametric MRI protocol, consisting of quantitative T1, T2, ADC, amide proton transfer (APT), T1ρ and DCE-MRI measurements, to evaluate MR-guided HIFU treatment of subcutaneous tumors in rats. K-means clustering using all different combinations of the endogenous contrast MRI parameters (feature vectors) was performed to segment the multiparametric data into tissue populations with similar MR parameter values. The optimal feature vector for identification of the extent of non-viable tumor tissue after HIFU treatment was determined by quantitative comparison between clustering-derived and histology-derived non-viable tumor fractions. The highest one-to-one correspondence between these clustering-based and histology-based non-viable tumor fractions was observed for the feature vector {ADC, APT-weighted signal} (R(2) to line of identity (R(2)y=x) = 0.92) and the strongest agreement was seen 3 days after HIFU (R(2)y=x = 0.97). To compare the multiparametric MRI analysis results with conventional HIFU monitoring and evaluation methods, the histology-derived non-viable tumor fractions were also quantitatively compared with non-perfused tumor fractions (derived from the level of contrast enhancement in the DCE-MRI measurements) and 240 CEM tumor fractions (i.e. thermal dose > 240 cumulative equivalent minutes at 43 °C). The correlation between histology-derived non-viable tumor fractions directly after HIFU and the 240 CEM fractions was high, but not significant. The non-perfused fractions overestimated the extent of non-viable tumor tissue directly after HIFU, whereas an underestimation was observed 3 days after HIFU. In conclusion, we have shown that a multiparametric MR analysis, especially based on the ADC and the APT-weighted signal, can potentially be used to determine the extent of non-viable tumor tissue 3 days after HIFU treatment. We expect that this method can be incorporated in the current clinical workflow of MR-HIFU ablation therapies.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Imagen por Resonancia Magnética/métodos , Neoplasias/terapia , Animales , Análisis por Conglomerados , Femenino , Neoplasias/patología , Ratas , Ratas Endogámicas F344
17.
Mol Pharm ; 12(6): 1921-8, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25922977

RESUMEN

Fibrin deposition plays an important role in the formation of mature tumor stroma and provides a facilitating scaffold for tumor angiogenesis. This study investigates the potential of the (111)In-labeled fibrin-binding peptide EPep for SPECT imaging of intratumoral fibrin deposition. (111)In-EPep and negative control (111)In-NCEPep were synthesized and characterized in vitro. In vivo SPECT images and ex vivo biodistribution profiles and autoradiographs were obtained in a fibrin-rich BT-20 breast cancer mouse model. Furthermore, biodistribution profiles were obtained in the fibrin-poor MDA-MD-231 model. In vitro, (111)In-EPep displayed significantly more binding than (111)In-NCEPep toward human and mouse derived fibrin. SPECT/CT images displayed a marked SPECT signal in the tumor area for BT-20 tumor bearing mice injected with EPep but not for mice injected with NCEPep. Biodistribution profiles of BT-20 tumor bearing mice 3 h post-tracer injection showed significantly higher tumor uptake for EPep with respect to NCEPep (0.39 ± 0.14 and 0.11 ± 0.03% ID g(-1), respectively), whereas uptake in other organs was similar for EPep and NCEPep. Autoradiography of BT-20 tumor sections displayed a high signal for EPep which colocalized with intratumoral fibrin deposits. Histological evaluation of MDA-MB-231 tumor sections displayed no significant tumor stroma and only minute fibrin deposits. Biodistribution profiles in MDA-MB-231 tumor bearing mice 3 h post-injection showed EPep tumor uptake (0.14 ± 0.04% ID g(-1)) which was significantly lower with respect to EPep BT-20 tumor uptake, indicating fibrin-specificity of EPep tumoral uptake. In conclusion, this work demonstrates the potential of EPep SPECT imaging for visualization of tumoral fibrin deposition.


Asunto(s)
Fibrina/metabolismo , Neoplasias/diagnóstico , Péptidos/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Radiografía
18.
Molecules ; 20(7): 12076-92, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26147581

RESUMEN

Membrane type-1 matrix metalloproteinase (MT1-MMP or MMP-14) plays an important role in adverse cardiac remodelling. Here, we aimed to develop radiolabeled activatable cell penetrating peptides (ACPP) sensitive to MT1-MMP for the detection of elevated MT1-MMP levels in adverse cardiac remodelling. Three ACPP analogs were synthesized and the most potent ACPP analog was selected using MT1-MMP sensitivity and enzyme specificity assays. This ACPP, called ACPP-B, showed high sensitivity towards MT1-MMP, soluble MMP-2, and MT2-MMP, while limited sensitivity was measured for other members of the MMP family. In in vitro cell assays, radiolabeled ACPP-B showed efficient cellular uptake upon activation. A pilot in vivo study showed increased uptake of the radiolabeled probe in regions of infarcted myocardium compared to remote myocardium, warranting further in vivo evaluation.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Sondas Moleculares , Radioisótopos/metabolismo , Animales , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacocinética , Humanos , Técnicas In Vitro , Masculino , Ratones , Especificidad por Sustrato , Distribución Tisular
19.
J Am Chem Soc ; 136(2): 638-41, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24359116

RESUMEN

Chemical exchange saturation transfer (CEST) agents are a new class of frequency-encoding MRI contrast agents with a great potential for molecular and cellular imaging. As for other established MRI contrast agents, the main drawback deals with their low sensitivity. The sensitivity issue may be tackled by increasing the number of exchanging protons involved in the transfer of saturated magnetization to the "bulk" water signal. Herein we show that the water molecules in the cytoplasm of red blood cells can be exploited as source of exchangeable protons provided that their chemical shift is properly shifted by the intracellular entrapment of a paramagnetic shift reagent. The sensitivity of this system is the highest displayed so far among CEST agents (less than 1 pM of cells), and the natural origin of this system makes it suitable for in vivo applications. The proposed Ln-loaded RBCs may be proposed as reporters of the blood volume in the tumor region.


Asunto(s)
Medios de Contraste , Eritrocitos/química , Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética , Neoplasias Experimentales/diagnóstico , Compuestos Organometálicos , Animales , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Humanos , Elementos de la Serie de los Lantanoides/administración & dosificación , Elementos de la Serie de los Lantanoides/química , Ratones , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/química
20.
Mol Pharm ; 11(5): 1415-23, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24641497

RESUMEN

The noninvasive imaging of matrix metalloproteinases (MMPs) activity in postischemic myocardial tissue holds great promise to predict cardiac function post-myocardial infarction. Consequently, development of MMP specific molecular imaging probes for noninvasive visualization and quantification of MMP activity is of great interest. A novel MMP imaging strategy is based on activatable cell-penetrating peptide probes (ACPP) that are sensitive to the proteolytic activity of MMP-2 and -9. The MMP-mediated activation of these ACPPs drives probe accumulation at the target site. The aim of this study was the development and characterization of radiolabeled MMP-2/9 sensitive ACPPs to assess MMP activity in myocardial remodeling in vivo. Specifically, a short and long-circulating MMP activatable cell-penetrating imaging probe (ACPP and Alb-ACPP, respectively; the latter is an ACPP modified with an albumin binding ligand that prolongs blood clearance) were successfully synthesized and radiolabeled. Subsequently, their biodistributions were determined in vivo in a Swiss mouse model of myocardial infarction. Both peptide probes showed a significantly higher uptake in infarcted myocardium compared to remote myocardium. The biodistribution for dual-isotope radiolabeled probes, which allowed us to discriminate between uncleaved ACPP and activated ACPP, showed increased retention of activated ACPP and activated Alb-ACPP in infarcted myocardium compared to remote myocardium. The enhanced retention correlated to gelatinase levels determined by gelatin zymography, whereas no correlation was found for the negative control: an MMP-2/9 insensitive non-ACPP. In conclusion, radiolabeled MMP sensitive ACPP probes enable to assess MMP activity in the course of remodeling post-myocardial infarction in vivo. Future research should evaluate the feasibility and the predictive value of the ACPP strategy for assessing MMP activity as a main player in postinfarction myocardial remodeling in vivo.


Asunto(s)
Metaloproteinasa 2 de la Matriz/química , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/química , Metaloproteinasas de la Matriz/metabolismo , Sondas Moleculares , Péptidos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Sondas Moleculares/química , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA