Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Climate (Basel) ; 11(5): 1-13, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37593169

RESUMEN

Sediment load in rivers is recognized as both a carrier and a potential source of contaminants. Sediment deposition significantly changes river flow and morphology, thereby affecting stream hydrology and aquatic life. We projected sediment load from the Pearl River basin (PRB), Mississippi into the northern Gulf of Mexico under a future climate with afforestation using the SWAT (Soil and Water Assessment Tool)-based HAWQS (Hydrologic and Water Quality System) model. Three simulation scenarios were developed in this study: (1) the past scenario for estimating the 40-year sediment load from 1981 to 2020; (2) the future scenario for projecting the 40-year sediment load from 2025 to 2064, and (3) the future afforestation scenario that was the same as the future scenario, except for converting the rangeland located in the middle section of the Pearl River watershed of the PRB into the mixed forest land cover. Simulations showed a 16% decrease in sediment load for the future scenario in comparison to the past scenario due to the decrease in future surface runoff. Over both the past and future 40 years, the monthly maximum and minimum sediment loads occurred, respectively, in April and August; whereas the seasonal sediment load followed the order: spring > winter > summer > fall. Among the four seasons, winter and spring accounted for about 86% of sediment load for both scenarios. Under the future 40-year climate conditions, a 10% reduction in annual average sediment load with afforestation was observed in comparison to without afforestation. This study provides new insights into how a future climate with afforestation would affect sediment load into the northern Gulf of Mexico.

2.
Environ Sci Pollut Res Int ; 25(22): 21731-21741, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29790049

RESUMEN

Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) in streams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities through absorption of light and complex metals with production of carcinogenic compounds. Although computer models have become increasingly popular in understanding and management of TOC, ROC, and LOC loads in streams, the usefulness of these models hinges on the availability of daily data for model calibration and validation. Unfortunately, these daily data are usually insufficient and/or unavailable for most watersheds due to a variety of reasons, such as budget and time constraints. A simple approach was developed here to calculate daily loads of TOC, ROC, and LOC in streams based on their seasonal loads. We concluded that the predictions from our approach adequately match field measurements based on statistical comparisons between model calculations and field measurements. Our approach demonstrates that an increase in stream discharge results in increased stream TOC, ROC, and LOC concentrations and loads, although high peak discharge did not necessarily result in high peaks of TOC, ROC, and LOC concentrations and loads. The approach developed herein is a useful tool to convert seasonal loads of TOC, ROC, and LOC into daily loads in the absence of measured daily load data.


Asunto(s)
Carbono/análisis , Ríos/química , Florida , Reproducibilidad de los Resultados , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA