Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Glob Chang Biol ; 24(12): 5695-5707, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30207418

RESUMEN

Increasing population densities and urban sprawl are causing rapid land use change from natural and agricultural ecosystems into smaller, urban residential properties. However, there is still great uncertainty about the effect that urbanization will have on biogeochemical C and N cycles and associated greenhouse gas (GHG) budgets. We aimed to evaluate how typical urbanization related land use change in subtropical Australia affects soil GHG exchange (N2 O and CH4 ) and the associated global warming potential (GWP). Fluxes were measured from three land uses: native forest, a long-term pasture, and a turf grass lawn continuously over two years using a high-resolution automated chamber system. The fertilized turf grass had the highest N2 O emissions, dominated by high fluxes >100 g N2 O-N day-1 immediately following establishment though decreased to just 0.6 kg N2 O-N ha-1 in the second year. Only minor fluxes occurred in the forest and pasture, with the high aeration of the sandy topsoil limiting N2 O emissions while promoting substantial CH4 uptake. Native forest was consistently the strongest CH4 sink (-2.9 kg CH4 -C ha-1  year-1 ), while the pasture became a short-term CH4 source after heavy rainfall when the soil reached saturation. On a two-year average, land use change from native forest to turf grass increased the non-CO2 GWP from a net annual GHG sink of -83 CO2 -e ha-1  year-1 to a source of 245 kg CO2 -e ha-1  year-1 . This study highlights that urbanization can substantially alter soil GHG exchange by altering plant soil water use and by increasing bulk density and inorganic N availability. However, on well-drained subtropical soils, the impact of urbanization on inter-annual non-CO2 GWP of turf grass was low compared to urbanized ecosystems in temperate climates.


Asunto(s)
Metano/análisis , Óxido Nitroso/análisis , Suelo/química , Urbanización , Agricultura , Australia , Dióxido de Carbono/análisis , Ecosistema , Bosques , Calentamiento Global , Poaceae
3.
Rapid Commun Mass Spectrom ; 30(18): 2017-26, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27470312

RESUMEN

RATIONALE: Denitrification (the reduction of oxidized forms of inorganic nitrogen (N) to N2 O and N2 ) from upland soils is considered to be the least well-understood process in the global N cycle. The main reason for this lack of understanding is that the terminal product (N2 ) of denitrification is extremely difficult to measure against the large atmospheric background. METHODS: We describe a system that combines the (15) N-tracer technique with a 40-fold reduced N2 (2% v/v) atmosphere in a fully automated incubation setup for direct quantification of N2 and N2 O emissions. The δ(15) N values of the emitted N2 and N2 O were determined using a custom-built gas preparation unit that was connected to a DELTA V Plus isotope ratio mass spectrometer. The system was tested on a pasture soil from sub-tropical Australia under different soil moisture conditions and combined with (15) N tracing in extractable soil N pools to establish a full N balance. RESULTS: The method proved to be highly sensitive for detecting N2 (1.12 µg N h(-1)  kg(-1) dry soil (ds)) and N2 O (0.36 µg N h(-1)  kg(-1) ds) emissions. The main end product of denitrification in the investigated soil was N2 O for both water contents, with N2 accounting for only 3% to 13% of the total denitrification losses. Between 90 and 95% of the added (15) N fertiliser could be recovered in N gases and extractable soil N pools. CONCLUSIONS: The high and N2 O-dominated denitrification rates found in this study are pointing at both the high ecological and the agronomic importance of denitrification in subtropical pasture soils. The new system allows for a direct and highly sensitive detection of N2 and N2 O fluxes from soils and may help to significantly improve our mechanistic understanding of N cycling and denitrification in terrestrial agro-ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Desnitrificación , Isótopos de Nitrógeno/análisis , Nitrógeno/metabolismo , Suelo/química , Límite de Detección , Modelos Lineales , Isótopos de Nitrógeno/metabolismo , Óxido Nitroso/metabolismo , Microbiología del Suelo
4.
Ecol Appl ; 24(3): 528-38, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24834738

RESUMEN

A unique high temporal frequency data set from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N20 emissions from subtropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N20 fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N20 fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N20 emission from irrigated cropping systems. A 25-year scenario analysis indicated that N20 losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e., frequent irrigation, avoidance of excessive fertilizer application), while sustaining maximum yield potentials.


Asunto(s)
Riego Agrícola , Modelos Teóricos , Óxido Nitroso/química , Óxido Nitroso/metabolismo , Programas Informáticos , Monitoreo del Ambiente/métodos , Gossypium , Queensland , Triticum
5.
J Environ Qual ; 51(4): 589-601, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34115402

RESUMEN

Manure generated from livestock production could represent an important source of plant nutrients in substitution of synthetic fertilizer. To evaluate the sustainability of partially substituting synthetic fertilizer with soil organic amendments (OAs) in horticulture, an economic and greenhouse gas (GHG) budget was developed. The boundary for analysis included manure processing (stockpiling vs. composting) and transport and spreading of manure and compost (feedlot and chicken) in intensively cultivated horticultural fields. The OA field application rates were calculated based on the nitrogen supplied by OAs. The GHG budget based on directly measured emissions indicates that the application of composted manure, in combination with reduced fertilizer rate, was always superior to stockpiled manures. Compost treatments showed from 9 to 90% less GHG emissions than stockpiled manure treatments. However, higher costs associated with the purchase and transport of composted manure (three times higher) generated a greater economic burden compared with stockpiled manure and synthetic fertilizer application. The plant nutrient replacement value of the OAs was considered only for the first year of application, and if long-term nutrient release from OAs is taken into account, additional savings are possible. Because the income from soil carbon sequestration initiatives in response to OA application is unlikely to bridge this financial gap, particularly in the short term, this study proposes that future policy should develop methodologies for avoided GHG emissions from OA application. The combined income from soil carbon sequestration and potentially avoided GHG initiatives could incentivize farmers to adopt OAs as a substitute for synthetic fertilizers, thereby promoting more sustainable farming practices.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Fertilizantes/análisis , Humanos , Estiércol , Nitrógeno/análisis , Suelo
6.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137034

RESUMEN

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Asunto(s)
Bosques , Calentamiento Global , Isópteros , Madera , Animales , Ciclo del Carbono , Temperatura , Clima Tropical , Madera/microbiología
7.
Sci Total Environ ; 772: 145031, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578140

RESUMEN

BACKGROUND: Soil N mineralisation is the process by which organic N is converted into plant-available forms, while soil N immobilisation is the transformation of inorganic soil N into organic matter and microbial biomass, thereafter becoming bio-unavailable to plants. Mechanistic models can be used to explore the contribution of mineralised or immobilised N to pasture growth through simulation of plant, soil and environment interactions driven by management. PURPOSE: Our objectives were (1) to compare the performance of three agro-ecosystems models (APSIM, DayCent and DairyMod) in simulating soil N, pasture biomass and soil water using the same experimental data in three diverse environments (2), to determine if tactical application of N fertiliser in different seasons could be used to leverage seasonal trends in N mineralisation to influence pasture growth and (3), to explore the sensitivity of N mineralisation to changes in N fertilisation, cutting frequency and irrigation rate. KEY RESULTS: Despite considerable variation in model sophistication, no model consistently outperformed the other models with respect to simulation of soil N, shoot biomass or soil water. Differences in the accuracy of simulated soil NH4 and NO3 were greater between sites than between models and overall, all models simulated cumulative N2O well. While tactical N application had immediate effects on NO3, NH4, N mineralisation and pasture growth, no long-term relationship between mineralisation and pasture growth could be discerned. It was also shown that N mineralisation of DayCent was more sensitive to N fertiliser and cutting frequency compared with the other models. MAJOR CONCLUSIONS: Our results suggest that while superfluous N fertilisation generally stimulates immobilisation and a pulse of N2O emissions, subsequent effects through N mineralisation/immobilisation effects on pasture growth are variable. We suggest that further controlled environment soil incubation research may help separate successive and overlapping cycles of mineralisation and immobilisation that make it difficult to diagnose long-term implications for (and associations with) pasture growth.

8.
J Environ Qual ; 49(5): 1126-1140, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33016438

RESUMEN

Nitrous oxide (N2 O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2 O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2 O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2 O chamber systems.


Asunto(s)
Gases de Efecto Invernadero , Óxido Nitroso/análisis , Nitrógeno , Suelo
9.
Sci Rep ; 10(1): 2399, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051438

RESUMEN

Nitrification inhibitors (NIs) have been shown to reduce emissions of the greenhouse gas nitrous oxide (N2O) from agricultural soils. However, their N2O reduction efficacy varies widely across different agro-ecosystems, and underlying mechanisms remain poorly understood. To investigate effects of the NI 3,4-dimethylpyrazole-phosphate (DMPP) on N-turnover from a pasture and a horticultural soil, we combined the quantification of N2 and N2O emissions with 15N tracing analysis and the quantification of the N2O-reductase gene (nosZ) in a soil microcosm study. Nitrogen fertilization suppressed nosZ abundance in both soils, showing that high nitrate availability and the preferential reduction of nitrate over N2O is responsible for large pulses of N2O after the fertilization of agricultural soils. DMPP attenuated this effect only in the horticultural soil, reducing nitrification while increasing nosZ abundance. DMPP reduced N2O emissions from the horticultural soil by >50% but did not affect overall N2 + N2O losses, demonstrating the shift in the N2O:N2 ratio towards N2 as a key mechanism of N2O mitigation by NIs. Under non-limiting NO3- availability, the efficacy of NIs to mitigate N2O emissions therefore depends on their ability to reduce the suppression of the N2O reductase by high NO3- concentrations in the soil, enabling complete denitrification to N2.

10.
Sci Rep ; 9(1): 11097, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366963

RESUMEN

The use of synthetic N fertilizers has grown exponentially over the last century, with severe environmental consequences. Most of the reactive N will ultimately be removed by denitrification, but estimates of denitrification are highly uncertain due to methodical constraints of existing methods. Here we present a novel, mobile isotope ratio mass spectrometer system (Field-IRMS) for in-situ quantification of N2 and N2O fluxes from fertilized cropping systems. The system was tested in a sugarcane field continuously monitoring N2 and N2O fluxes for 7 days following fertilization using a fully automated measuring cycle. The detection limit of the Field-IRMS proved to be highly sensitive for N2 (54 g ha-1 day-1) and N2O (0.25 g ha-1 day-1) emissions. The main product of denitrification was N2 with total denitrification losses of up to 1.3 kg N ha-1 day-1. These losses demonstrate sugarcane systems in Australia are a hotspot for denitrification where high emissions of N2O and N2 can be expected. The new Field-IRMS allows for the direct and highly sensitive detection of N2 and N2O fluxes in real time at a high temporal resolution, which will help to improve our quantitative understanding of denitrification in fertilized cropping systems.


Asunto(s)
Fertilizantes/análisis , Espectrometría de Masas/métodos , Isótopos de Nitrógeno/química , Nitrógeno/química , Óxido Nitroso/química , Desnitrificación , Suelo/química
11.
Sci Total Environ ; 637-638: 813-824, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29758436

RESUMEN

Accounting for nitrogen (N) release from organic amendments (OA) can reduce the use of synthetic N-fertiliser, sustain crop production, and potentially reduce soil borne greenhouse gases (GHG) emissions. However, it is difficult to assess the GHG mitigation potential for OA as a substitute of N-fertiliser over the long term due to only part of the organic N added to soil is being released in the first year after application. High-resolution nitrous oxide (N2O) and carbon dioxide (CO2) emissions monitored from a horticultural crop rotation over 2.5 years from conventional urea application rates were compared to treatments receiving an annual application of raw and composted chicken manure combined with conventional and reduced N-fertiliser rates. The repeated application of composted manure did not increase annual N2O emissions while the application of raw manure resulted in N2O emissions up to 35.2 times higher than the zero N fertiliser treatment and up to 4.7 times higher than conventional N-fertiliser rate due to an increase in C and N availability following the repeated application of raw OA. The main factor driving N2O emissions was the incorporation of organic material accompanied by high soil moisture while the application of synthetic N-fertiliser induced only short-term N2O emission pulse. The average annual N2O emission factor calculated accounting for the total N applied including OA was equal to 0.27 ±â€¯0.17%, 3.7 times lower than the IPCC default value. Accounting for the estimated N release from OA only enabled a more realistic N2O emission factor to be defined for organically amended field that was equal to 0.48 ±â€¯0.3%. This study demonstrated that accounting for the N released from repeated application of composted rather than raw manure can be a viable pathway to reduce N2O emissions and maintain soil fertility.

12.
PLoS One ; 10(6): e0127333, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043188

RESUMEN

Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.


Asunto(s)
Agricultura , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Modelos Teóricos , Riego Agrícola , Simulación por Computador , Nebraska , Lluvia , Estaciones del Año , Suelo , Agua , Zea mays/crecimiento & desarrollo
13.
Springerplus ; 3: 491, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221742

RESUMEN

As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha(-1) on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha(-1)) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC < MM. Nitrous oxide emissions were significantly less in the clay soil compared to the sandy loam at all WFPS, and could be ranked RB < MB < MM < CM < UN < HC. These results led to linear models being developed to predict CO2 and N2O emissions as a function of the dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions.

14.
Carbon Balance Manag ; 1: 14, 2006 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-17150091

RESUMEN

BACKGROUND: Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO2 on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM). RESULTS: We estimate organic carbon storage in the topsoil (0-10 cm) of the Australian continent in 1990 to be 8.1 Gt. This equates to 19 and 34 Gt in the top 30 and 100 cm of soil, respectively. By the year 2100, under a low emissions scenario, topsoil organic carbon stores of the continent will have increased by 0.6% (49 Mt C). Under a high emissions scenario, the Australian continent becomes a source of CO2 with a net reduction of 6.4% (518 Mt) in topsoil carbon, when compared to no climate change. This is partially offset by the predicted increase in NPP of 20.3% CONCLUSION: Climate change impacts must be studied holistically, requiring integration of climate, plant, ecosystem and soil sciences. The SOCRATES terrestrial carbon cycling model provides realistic estimates of changes in SOC storage in response to climate change over the next century, and confirms the need for greater consideration of soils in assessing the full impact of climate change and the development of quantifiable mitigation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA