Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 223: 95-105, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301751

RESUMEN

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


Asunto(s)
ADN , Proteína de Replicación A , Humanos , Proteína de Replicación A/genética , ADN/genética , ADN de Cadena Simple/genética , Aminoácidos , Bioensayo , Colorantes
2.
J Allergy Clin Immunol ; 153(3): 793-808.e2, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38000698

RESUMEN

BACKGROUND: Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE: Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS: Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS: At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS: ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.


Asunto(s)
Asma , Interleucina-33 , Ratones , Animales , Humanos , Interleucina-33/metabolismo , Ratones Noqueados , Pulmón , Epitelio , Acetilcolina , Alérgenos , Colinérgicos , Receptores Colinérgicos/metabolismo
3.
Anal Chem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976774

RESUMEN

Discovery and identification of a new endogenous metabolite are typically hindered by requirements of large sample volumes and multistage purifications to guide synthesis of the standard. Presented here is a metabolomics platform that uses chemical tagging and tandem mass spectrometry to determine structure, direct synthesis, and confirm identity. Three new homocysteine metabolites are reported: N-succinyl homocysteine, 2-methyl-1,3-thiazinane-4-carboxylic acid (MTCA), and homolanthinone.

4.
J Allergy Clin Immunol ; 151(2): 494-508.e6, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36306937

RESUMEN

BACKGROUND: Alternaria alternata and house dust mite exposure evokes IL-33 secretion from the airway epithelium, which functions as an alarmin to stimulate type 2 immunity. Extracellular DNA (eDNA) is also an alarmin that intensifies inflammation in cystic fibrosis, chronic obstructive pulmonary disease, and asthma. OBJECTIVE: We investigated the mechanisms underlying allergen-evoked DNA mobilization and release from the airway epithelium and determined the role of eDNA in type 2 immunity. METHODS: Human bronchial epithelial (hBE) cells were used to characterize allergen-induced DNA mobilization and extracellular release using comet assays to measure DNA fragmentation, Qubit double-stranded DNA assays to measure DNA release, and DNA sequencing to determine eDNA composition. Mice were used to investigate the role of eDNA in type 2 immunity. RESULTS: Alternaria extract rapidly induces mitochondrial and nuclear DNA release from human bronchial epithelial cells, whereas house dust mite extract induces mitochondrial DNA release. Caspase-3 is responsible for nuclear DNA fragmentation and becomes activated after cleavage by furin. Analysis of secreted nuclear DNA showed disproportionally higher amounts of promotor and exon sequences and lower intron and intergenic regions compared to predictions of random DNA fragmentation. In mice, Alternaria-induced type 2 immune responses were blocked by pretreatment with a DNA scavenger. In caspase-3-deficient mice, Alternaria-induced DNA release was suppressed. Furthermore, intranasal administration of mouse genomic DNA with Alternaria amplified secretion of IL-5 and IL-13 into bronchoalveolar lavage fluid while DNA alone had no effect. CONCLUSION: These findings highlight a novel, allergen-induced mechanism of rapid DNA release that amplifies type 2 immunity in airways.


Asunto(s)
Alarminas , Alérgenos , Ratones , Humanos , Animales , Caspasa 3/metabolismo , Alarminas/metabolismo , Epitelio , Pyroglyphidae , ADN/metabolismo , Pulmón
5.
Am J Physiol Cell Physiol ; 325(5): C1369-C1386, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842751

RESUMEN

Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.


Asunto(s)
Alérgenos , Asma , Humanos , Alarminas/metabolismo , Citocinas/metabolismo , Inflamación , Adenosina Trifosfato , Inmunidad Innata
6.
Analyst ; 148(2): 297-304, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36533920

RESUMEN

Isobaric labelling of fatty acids is complicated by chromatographic co-elution of double bond isomers. This produces contaminated spectra which can mask important biological changes. Here two derivatization strategies are combined to improve throughput and produce MS2 reporters which change mass depending on double bond position. A 6-plex isobaric tag is attached to the acid group, followed by the tosylation of the double bond using chloramine-T. These two derivatizations allowed for the chromatographic resolution of nearly all investigated isomers using a 3.5 minute ultrafast method. Further isomer differentiation is achieved upon fragmentation as reporter masses scale with the double bond location. This occurs by a dual-fragmentation route which reveals the isobaric labelling and fragments along the double bond of each analyte. These unique fragments allowed for accurate quantitation of co-isolated double bond isomers where traditional isobaric tags would experience ratio distortion. Saturated and monounsaturated fatty acids were characterized by this rapid 6-plex method and produced an average signal RSD of 9.3% and R2 of 0.99. The method was then used to characterize fatty acid dysregulation upon inhibition of stearoyl CoA desaturase with CAY10566.


Asunto(s)
Ácidos Grasos Monoinsaturados , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Isomerismo , Ácidos Grasos
7.
J Med Virol ; 93(11): 6155-6162, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314058

RESUMEN

Zika virus (ZIKV) is an arbovirus belonging to the flaviviridae family with a risk assessment that has been increasing in recent years and was labeled a global health emergency by the World Health Organization in 2016. There are currently no Food and Drug Administration-approved treatment options available for ZIKV, so expeditious development of treatment options is urgent. To expedite this process, an on-market drug, tamoxifen (TAM), was selected as a promising candidate for repurposing due to its wide range of biological activities and because it has already been shown to possess activity against hepatitis C virus, a flavivirus in a separate genus. Anti-ZIKV activity of TAM was assessed by compound screens using an infectious virus and mechanistic details were gleaned from time of addition and virucidal studies. TAM and an active metabolite, 4-hydroxytamoxifen (TAM-OH), both showed promising antiviral activity (EC50 ≈9 and 5 µM, respectively) in initial compound screening and up to 8-h postinfection, though the virucidal assay indicated that they do not possess any direct virucidal activity. Additionally, TAM was assessed for its activity against ZIKV in the human male germ cell line, SEM-1, due to the sexually transmitted nature of ZIKV owing to its extended survival times in germ cells. Virus titers show diminished replication of ZIKV over 7 days compared to controls. These data indicate that TAM has the potential to be repurposed as an anti-ZIKV therapeutic and warrants further investigation.


Asunto(s)
Antivirales/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Animales , Chlorocebus aethiops , Humanos , Ratones , Células Vero , Carga Viral/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
8.
Photochem Photobiol Sci ; 20(12): 1621-1633, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34822125

RESUMEN

Photodeoxygenation of dibenzothiophene S-oxide and its derivatives have been used to generate atomic oxygen [O(3P)] to examine its effect on proteins, nucleic acids, and lipids. The unique reactivity and selectivity of O(3P) have shown distinct oxidation products and outcomes in biomolecules and cell-based studies. To understand the scope of its global impact on the cell, we treated MDA-MB-231 cells with 2,8-diacetoxymethyldibenzothiophene S-oxide and UV-A light to produce O(3P) without targeting a specific cell organelle. Cellular responses to O(3P)-release were analyzed using cell viability and cell cycle phase determination assays. Cell death was observed when cells were treated with higher concentrations of sulfoxides and UV-A light. However, significant differences in cell cycle phases due to UV-A irradiation of the sulfoxide were not observed. We further performed RNA-Seq analysis to study the underlying biological processes at play, and while UV-irradiation itself influenced gene expression, there were 9 upregulated and 8 downregulated genes that could be attributed to photodeoxygenation.


Asunto(s)
Óxidos , Tiofenos , Oxidación-Reducción , Tiofenos/farmacología , Rayos Ultravioleta
9.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445774

RESUMEN

Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor, 10Panx (50 µM), the VDAC-1 inhibitor, DIDS (100 µM), and was nearly abolished by pretreatment with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked by oxidized ATP (oATP, 300 µM) and another that was blocked by the TRPV-1 antagonist A784168 (100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33 receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens derived from Alternaria.


Asunto(s)
Adenosina Trifosfato/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Inmunidad/efectos de los fármacos , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Polietileneimina/farmacología , Alérgenos/inmunología , Animales , Calcio/inmunología , Células Cultivadas , Citocinas/inmunología , Femenino , Humanos , Inmunidad/inmunología , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/inmunología , ARN Mensajero/inmunología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología
10.
J Physiol ; 598(10): 1829-1845, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32103508

RESUMEN

KEY POINTS: Alternaria aeroallergens induce the release of ATP from human bronchial epithelial (HBE) cells by activating a conductive pathway involving voltage-dependent anion channel-1 (VDAC-1) and by exocytosis of ATP localized within membrane vesicles. Inhibition of VDAC-1 blocked Alternaria-evoked Ca2+ uptake across the plasma membrane of HBE cells and interleukin (IL)-33 release into the extracellular media. Reducing cholesterol content with a cholesterol scavenger (ß-methylcyclodextrin) or statin compound (simvastatin) blocked ATP and IL-33 release by lowering the expression of VDAC-1 in the plasma membrane. Pretreatment with simvastatin for 24 h also inhibited the increase in tight junction macromolecule permeability that occurs following Alternaria exposure. These results establish a novel role for VDAC-1 as a mechanism underlying ATP release induced by fungal allergens and suggests a possible therapeutic use for cholesterol lowering compounds in reducing Alternaria-stimulated allergic inflammation. ABSTRACT: Human bronchial epithelial (HBE) cells exposed to allergens derived from the common saprophytic fungus, Alternaria alternata release ATP, which in turn stimulates P2X7 receptor-mediated Ca2+ uptake across the plasma membrane. The subsequent increase in intracellular calcium concentration induces proteolytic processing and secretion of interleukin (IL)-33, a critical cytokine involved in the initiation of allergic airway inflammation. A major objective of the present study was to identify the mechanism responsible for conductive ATP release. The results show that pretreatment of HBE cells with inhibitors of the voltage-dependent anion channel-1 (VDAC-1) or treatment with a VDAC-1 selective blocking antibody or silencing mRNA expression of the channel by RNA interference, inhibit Alternaria-evoked ATP release. Moreover, inhibition of VDAC-1 channel activity or reducing protein expression blocked the secretion of IL-33. Similarly, reducing the cholesterol content of HBE cells with simvastatin or the cholesterol scavenger ß-methylcyclodextrin also blocked ATP release and IL-33 secretion by decreasing the level of VDAC-1 expression in the plasma membrane. In addition, simvastatin inhibited the increase in tight junction macromolecule permeability that was previously observed after Alternaria exposure. These results demonstrate a novel function for VDAC-1 as the conductive mechanism responsible for Alternaria-induced ATP release, an essential early step in the processing, mobilization and secretion of IL-33 by the airway epithelium. Furthermore, the simvastatin-evoked reduction of VDAC-1 expression in the plasma membrane, suggests the possibility that cholesterol lowering compounds may be beneficial in alleviating allergic airway inflammation induced by fungal allergens.


Asunto(s)
Alérgenos , Interleucina-33 , Adenosina Trifosfato , Alternaria , Colesterol , Epitelio , Humanos , Canal Aniónico 1 Dependiente del Voltaje
11.
Bioorg Chem ; 105: 104442, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197850

RESUMEN

Photodeoxygenation of Dibenzothiophene-S-oxide (DBTO) in UV-A light produces atomic oxygen [O(3P)] and the corresponding sulfide, dibenzothiophene (DBT). Recently, DBTO has been derivatized to study the effect of UV-A light-driven photodeoxygenation in lipids, proteins, and nucleic acids. In this study, two DBTO derivatives with triphenylphosphonium groups were synthesized to promote mitochondrial accumulation. The sulfone analogs of these derivatives were also synthesized and used as fluorescent mitochondrial dyes to assess localization in mitochondria of HeLa cells. These derivatives were then used to study the effect of photodeoxygenation on MDA-MB-231 breast cancer cell line using cell viability assays, cell cycle phase determination tests, and RNA-Seq analysis. The DBTO derivatives were found to significantly decrease cell viability only after UV-A irradiation as a result of generating corresponding sulfides that were found to significantly affect gene expression and cell cycle.


Asunto(s)
Antineoplásicos/síntesis química , Citotoxinas/síntesis química , Compuestos Organofosforados/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Secuencia de Bases , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Citotoxinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Compuestos Organofosforados/farmacología , Oxígeno/química , Oxígeno/metabolismo , Procesos Fotoquímicos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Tiofenos/química , Rayos Ultravioleta
12.
Molecules ; 25(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120985

RESUMEN

Adenosine and uric acid (UA) play a pivotal role in lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). In the present experiments, we measured adenosine synthesis from nicotinamide adenine dinucleotide (NAD+) in membranes prepared from wild type (WT) and CD38 knockout (CD38KO) mouse lungs, from cultured airway smooth muscle and epithelial cells, and in bronchoalveolar lavage fluid after airway challenge with epidemiologically relevant allergens. Adenosine was determined using an enzymatically coupled assay that produces ATP and is detected by luminescence. Uric acid was determined by ELISA. Exposure of cultured airway epithelial cells to Alternaria alternata extract caused significant nucleotide (NAD+ and ATP) release in the culture media. The addition of NAD+ to membranes prepared from WT mice resulted in faster generation of adenosine compared to membranes from CD38KO mice. Formation of adenosine from NAD+ affected UA and ATP concentrations, its main downstream molecules. Furthermore, NAD+ and adenosine concentrations in the bronchoalveolar lavage fluid decreased significantly following airway challenge with house-dust mite extract in WT but not in CD38KO mice. Thus, NAD+ is a significant source of adenosine and UA in the airways in mouse models of allergic airway disease, and the capacity for their generation from NAD+ is augmented by CD38, a major NADase with high affinity for NAD+. This novel non-canonical NAD+-adenosine-UA pathway that is triggered by allergens has not been previously described in the airways.


Asunto(s)
Adenosina/biosíntesis , Hipersensibilidad/metabolismo , Pulmón/metabolismo , NAD/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Humanos , Hipersensibilidad/inmunología , Pulmón/inmunología
13.
Am J Physiol Cell Physiol ; 316(1): C16-C32, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30303690

RESUMEN

Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Transporte Iónico/fisiología , Depuración Mucociliar/fisiología , Estrés Oxidativo/fisiología , Mecánica Respiratoria/fisiología , Animales , Humanos
14.
J Allergy Clin Immunol ; 142(6): 1808-1817.e3, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29522849

RESUMEN

BACKGROUND: Altered epithelial physical and functional barrier properties along with TH1/TH2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation. OBJECTIVE: We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function. METHODS: Airway inflammation, including junction protein expression, was evaluated in allergen-challenged mice with and without treatment with knob. Human bronchial epithelial cells were exposed to knob, and its effects on expression of junction proteins and barrier integrity were determined. RESULTS: Administration of knob to allergen-challenged mice suppressed airway inflammation (eosinophilia, airway hyperresponsiveness, and IL-5 levels) and prevented allergen-induced loss of airway epithelial occludin and E-cadherin expression. Additionally, knob decreased expression of TH2-promoting inflammatory mediators, specifically IL-33, by murine lung epithelial cells. At a cellular level, treatment of human bronchial epithelial cells with knob activated c-Jun N-terminal kinase, increased expression of occludin and E-cadherin, and enhanced epithelial barrier integrity. CONCLUSION: Increased expression of junction proteins mediated by knob leading to enhanced epithelial barrier function might mitigate the allergen-induced airway inflammatory response, including asthma.


Asunto(s)
Proteínas de la Cápside/farmacología , Proteínas de la Cápside/uso terapéutico , Células Epiteliales/efectos de los fármacos , Adenoviridae , Anciano , Animales , Bronquios/citología , Líquido del Lavado Bronquioalveolar/inmunología , Cadherinas/metabolismo , Línea Celular , Citocinas/inmunología , Eosinofilia/inmunología , Células Epiteliales/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Ocludina/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/inmunología
15.
Am J Physiol Cell Physiol ; 314(5): C627-C639, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365273

RESUMEN

The objective of this study was to determine the molecular identity of ion channels involved in K+ secretion by the mammary epithelium and to examine their regulation by purinoceptor agonists. Apical membrane voltage-clamp experiments were performed on human mammary epithelial cells where the basolateral membrane was exposed to the pore-forming antibiotic amphotericin B dissolved in a solution with intracellular-like ionic composition. Addition of the Na+ channel inhibitor benzamil reduced the basal current, consistent with inhibition of Na+ uptake across the apical membrane, whereas the KCa3.1 channel blocker TRAM-34 produced an increase in current resulting from inhibition of basal K+ efflux. Treatment with two-pore potassium (K2P) channel blockers quinidine, bupivacaine and a selective TASK1/TASK3 inhibitor (PK-THPP) all produced concentration-dependent inhibition of apical K+ efflux. qRT-PCR experiments detected mRNA expression for nine K2P channel subtypes. Western blot analysis of biotinylated apical membranes and confocal immunocytochemistry revealed that at least five K2P subtypes (TWIK1, TREK1, TREK2, TASK1, and TASK3) are expressed in the apical membrane. Apical UTP also increased the current, but pretreatment with the PKC inhibitor GF109203X blocked the response. Similarly, direct activation of PKC with phorbol 12-myristate 13-acetate produced a similar increase in current as observed with UTP. These results support the conclusion that the basal level of K+ secretion involves constitutive activity of apical KCa3.1 channels and multiple K2P channel subtypes. Apical UTP evoked a transient increase in KCa3.1 channel activity, but over time caused persistent inhibition of K2P channel function leading to an overall decrease in K+ secretion.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Línea Celular Transformada , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Canales Epiteliales de Sodio/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/efectos de los fármacos , Potenciales de la Membrana , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Proteína Quinasa C/metabolismo , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y/efectos de los fármacos , Vías Secretoras , Sodio/metabolismo , Uridina Trifosfato/farmacología
16.
Am J Physiol Cell Physiol ; 313(1): C68-C79, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28446427

RESUMEN

Aeroallergens produced by Alternaria alternata can elicit life-threatening exacerbations of asthma in patients sensitized to this fungus. In this study, the effect of Alternaria on ion transport mechanisms underlying mucociliary clearance and airway epithelial barrier function was investigated in human airway epithelial cells. Apical exposure to Alternaria induced an increase in anion secretion that was inhibited by blockers of CFTR and Ca2+-activated Cl- channels. Stimulation of anion secretion was dependent on Ca2+ uptake from the apical solution. Alternaria exposure also produced an increase in reactive oxygen species (ROS) that was blocked by pretreatment with the oxidant scavenger glutathione (GSH). GSH and the NADPH oxidase inhibitor/complex 1 electron transport inhibitor diphenylene iodonium chloride (DPI) blocked ATP release and the increase in intracellular [Ca2+] evoked by AlternariaAlternaria also decreased transepithelial resistance, and a portion of this effect was dependent on the increase in ROS. However, the Alternaria-induced increase in unidirectional dextran (molecular mass = 4,000 Da) flux across the epithelium could not be accounted for by increased oxidative stress. These results support the conclusion that oxidative stress induced by Alternaria was responsible for regulating Ca2+-dependent anion secretion and tight junction electrical resistance that would be expected to affect mucociliary clearance.


Asunto(s)
Alérgenos/farmacología , Alternaria/química , Calcio/metabolismo , Células Epiteliales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Alternaria/inmunología , Bronquios , Línea Celular Transformada , Polaridad Celular , Mezclas Complejas/farmacología , Dextranos/metabolismo , Inhibidores Enzimáticos/farmacología , Células Epiteliales/citología , Células Epiteliales/inmunología , Glutatión/farmacología , Humanos , Transporte Iónico/efectos de los fármacos , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Compuestos Onio/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
17.
J Physiol ; 595(14): 4631-4645, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28481415

RESUMEN

KEY POINTS: Hydrocortisone (HC) is required for activation of large-conductance Ca2+ -activated K+ current (BK) by purinergic receptor agonists. HC reduces insertion of the stress-regulated exon (STREX) in the KCNMA1 gene, permitting protein kinase C (PKC)-dependent channel activation. Overlapping and unique purinergic signalling regions exist at the apical border of differentiated surface cells. BK channels localize in the cilia of surface cells. ABSTRACT: In the present study we investigated the role of hydrocortisone (HC) on uridine-5'-triphosphate (UTP)-stimulated ion transport in differentiated, pseudostratified epithelia derived from normal human bronchial basal cells. The presence of a UTP-stimulated, paxilline-sensitive large-conductance Ca2+ -activated K+ (BK) current was demonstrated in control epithelia but was not stimulated in epithelia differentiated in the absence of HC (HC0). Addition of the BK channel opener NS11021 directly activated channels in control epithelia; however, under HC0 conditions, activation only occurred when UTP was added after NS11021. The PKC inhibitors GF109203x and Gö6983 blocked BK activation by UTP in control epithelia, suggesting that PKC-mediated phosphorylation plays a permissive role in purinoceptor-stimulated BK activation. Moreover, HC0 epithelia expressed significantly more KCNMA1 containing the stress-regulated exon (STREX), a splice-variant of the α-subunit that displays altered channel regulation by phosphorylation, compared to control epithelia. Furthermore, BK channels as well as purinergic receptors were shown to localize in unique and overlapping domains at the apical membrane of ciliated surface cells. These results establish a previously unrecognized role for glucocorticoids in regulation of BK channels in airway epithelial cells.


Asunto(s)
Bronquios/fisiología , Células Epiteliales/efectos de los fármacos , Hidrocortisona/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Agonistas del Receptor Purinérgico P2Y/farmacología , Mucosa Respiratoria/fisiología , Adenosina Trifosfato/farmacología , Diferenciación Celular , Línea Celular , Células Epiteliales/fisiología , Humanos , Indoles/farmacología , Maleimidas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Proteína Quinasa C/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Receptores Purinérgicos P2Y/fisiología , Mucosa Respiratoria/citología , Uridina Trifosfato/farmacología
18.
Am J Physiol Cell Physiol ; 311(2): C225-36, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27306366

RESUMEN

Glucocorticoids strongly influence the mucosal-defense functions performed by the bronchial epithelium, and inhaled corticosteroids are critical in the treatment of patients with inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. A common pathology associated with these diseases is reduced mucociliary clearance, a defense mechanism involving the coordinated transport of salt, water, and mucus by the bronchial epithelium, ultimately leading to retention of pathogens and particles in the airways and to further disease progression. In the present study we investigated the role of hydrocortisone (HC) in differentiation and development of the ion transport phenotype of normal human bronchial epithelial cells under air-liquid interface conditions. Normal human bronchial epithelial cells differentiated in the absence of HC (HC0) showed significantly less benzamil-sensitive short-circuit current than controls, as well as a reduced response after stimulation with the selective ß2-adrenergic receptor agonist salbutamol. Apical membrane localization of epithelial Na(+) channel α-subunits was similarly reduced in HC0 cells compared with controls, supporting a role of HC in the trafficking and density of Na(+) channels in the plasma membrane. Additionally, glucocorticoid exposure during differentiation regulated the transcription of cystic fibrosis transmembrane conductance regulator and ß2-adrenergic receptor mRNAs and appeared to be necessary for the expression of cystic fibrosis transmembrane conductance regulator-dependent anion secretion in response to ß2-agonists. HC had no significant effect on surface cell differentiation but did modulate the expression of mucin mRNAs. These findings indicate that glucocorticoids support mucosal defense by regulating critical transport pathways essential for effective mucociliary clearance.


Asunto(s)
Bronquios/fisiología , Diferenciación Celular/fisiología , Células Epiteliales/fisiología , Hidrocortisona/metabolismo , Transporte Iónico/fisiología , Depuración Mucociliar/fisiología , Amilorida/análogos & derivados , Amilorida/farmacología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Mucinas/metabolismo , Depuración Mucociliar/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiología , Sodio/metabolismo
19.
J Biol Chem ; 290(20): 12547-57, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25829491

RESUMEN

It is widely known that ion channels are expressed in the plasma membrane. However, a few studies have suggested that several ion channels including voltage-gated K(+) (Kv) channels also exist in intracellular organelles where they are involved in the biochemical events associated with cell signaling. In the present study, Western blot analysis using fractionated protein clearly indicates that Kv1.3 channels are expressed in the nuclei of MCF7, A549, and SNU-484 cancer cells and human brain tissues. In addition, Kv1.3 is located in the plasma membrane and the nucleus of Jurkat T cells. Nuclear membrane hyperpolarization after treatment with margatoxin (MgTX), a specific blocker of Kv1.3 channels, provides evidence for functional channels at the nuclear membrane of A549 cells. MgTX-induced hyperpolarization is abolished in the nuclei of Kv1.3 silenced cells, and the effects of MgTX are dependent on the magnitude of the K(+) gradient across the nuclear membrane. Selective Kv1.3 blockers induce the phosphorylation of cAMP response element-binding protein (CREB) and c-Fos activation. Moreover, Kv1.3 is shown to form a complex with the upstream binding factor 1 in the nucleus. Chromatin immunoprecipitation assay reveals that Sp1 transcription factor is directly bound to the promoter region of the Kv1.3 gene, and the Sp1 regulates Kv1.3 expression in the nucleus of A549 cells. These results demonstrate that Kv1.3 channels are primarily localized in the nucleus of several types of cancer cells and human brain tissues where they are capable of regulating nuclear membrane potential and activation of transcription factors, such as phosphorylated CREB and c-Fos.


Asunto(s)
Encéfalo/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Canal de Potasio Kv1.3/metabolismo , Potenciales de la Membrana/fisiología , Encéfalo/citología , Membrana Celular/genética , Núcleo Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Silenciador del Gen , Humanos , Células Jurkat , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana/efectos de los fármacos , Fosforilación , Venenos de Escorpión/farmacología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L50-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26566905

RESUMEN

Carvedilol functions as a nonselective ß-adrenergic receptor (AR)/α1-AR antagonist that is used for treatment of hypertension and heart failure. Carvedilol has been shown to function as an inverse agonist, inhibiting G protein activation while stimulating ß-arrestin-dependent signaling and inducing receptor desensitization. In the present study, short-circuit current (Isc) measurements using human airway epithelial cells revealed that, unlike ß-AR agonists, which increase Isc, carvedilol decreases basal and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-stimulated current. The decrease in Isc resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR). The carvedilol effect was abolished by pretreatment with the ß2-AR antagonist ICI-118551, but not the ß1-AR antagonist atenolol or the α1-AR antagonist prazosin, indicating that its inhibitory effect on Isc was mediated through interactions with apical ß2-ARs. However, the carvedilol effect was blocked by pretreatment with the microtubule-disrupting compound nocodazole. Furthermore, immunocytochemistry experiments and measurements of apical CFTR expression by Western blot analysis of biotinylated membranes revealed a decrease in the level of CFTR protein in monolayers treated with carvedilol but no significant change in monolayers treated with epinephrine. These results demonstrate that carvedilol binding to apical ß2-ARs inhibited CFTR current and transepithelial anion secretion by a mechanism involving a decrease in channel expression in the apical membrane.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/efectos de los fármacos , Propanolaminas/farmacología , Receptores Adrenérgicos beta 2/efectos de los fármacos , Aniones/metabolismo , Arrestinas/metabolismo , Carvedilol , Células Cultivadas , AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Humanos , Transducción de Señal , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA