Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 186(1): 123-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26597881

RESUMEN

The tumor microenvironment of cholangiocarcinoma (CCA) is composed of numerous cells, including mast cells (MCs). MCs release histamine, which increases CCA progression and angiogenesis. Cholangiocytes secrete stem cell factor, which functions via the MC growth factor receptor c-Kit. Here, we show that cholangiocytes express histidine decarboxylase and its inhibition reduces CCA growth. MC recruitment in the tumor microenvironment increased CCA growth. MC infiltration and MC markers were detected by toluidine blue staining and real-time PCR in human biopsies and in tumors from athymic mice treated with saline, histamine, histidine decarboxylase inhibitor, or cromolyn sodium. Tumor growth, angiogenesis, and epithelial-mesenchymal transition (EMT)/extracellular matrix (ECM) markers were measured in mice treated with cromolyn sodium. In vitro, human CCA cells were treated with MC supernatant fluids before evaluating angiogenesis and EMT/ECM expression. Migration assays were performed with CCA cells treated with the stem cell factor inhibitor. MC supernatant fluids increased CCA histidine decarboxylase, vascular endothelial growth factor, and MC/EMT/ECM expression that decreased with pretreatment of cromolyn sodium. MCs were found in human biopsies. In mice treated with cromolyn sodium, MC infiltration and tumor growth decreased. Inhibition of CCA stem cell factor blocked MC migration and MC/EMT/ECM in CCA. MCs migrate into CCA tumor microenvironment via c-Kit/stem cell factor and increase tumor progression, angiogenesis, EMT switch, and ECM degradation.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Histamina/metabolismo , Mastocitos/metabolismo , Microambiente Tumoral/inmunología , Animales , Neoplasias de los Conductos Biliares/inmunología , Diferenciación Celular/inmunología , Proliferación Celular , Colangiocarcinoma/inmunología , Transición Epitelial-Mesenquimal/inmunología , Técnica del Anticuerpo Fluorescente , Xenoinjertos , Humanos , Inmunohistoquímica , Mastocitos/citología , Ratones , Ratones Desnudos , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Factor de Células Madre/metabolismo , Análisis de Matrices Tisulares
2.
Hepatology ; 64(4): 1202-1216, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27351144

RESUMEN

UNLABELLED: Hepatic fibrosis is marked by activation of hepatic stellate cells (HSCs). Cholestatic injury precedes liver fibrosis, and cholangiocytes interact with HSCs promoting fibrosis. Mast cells (MCs) infiltrate following liver injury and release histamine, increasing biliary proliferation. We evaluated if inhibition of MC-derived histamine decreases biliary proliferation and fibrosis. Wild-type and multidrug resistance 2 knockout mice (9-11 weeks) were treated with cromolyn sodium for 1 week to block MC-derived histamine. Biliary mass and proliferation were evaluated by immunohistochemistry for cytokeratin 19 and Ki-67. Bile flow, bicarbonate excretion, and total bile acids were measured in all mice. Fibrosis was evaluated by sirius red/fast green staining and by quantitative polymerase chain reaction for alpha-smooth muscle actin, fibronectin, collagen type 1a, and transforming growth factor-beta 1. HSC activation was evaluated by quantitative polymerase chain reaction in total liver and immunofluorescent staining in tissues for synaptophysin 9. Histamine serum secretion was measured by enzymatic immunoassay. Mouse liver and human liver samples from control or primary sclerosing cholangitis patients were evaluated for MC markers by quantitative polymerase chain reaction and immunohistochemistry. In vitro, cultured MCs were transfected with histidine decarboxylase short hairpin RNA to decrease histamine secretion and subsequently cocultured with cholangiocytes or HSCs prior to measuring fibrosis markers, proliferation, and transforming growth factor-beta 1 secretion. Treatment with cromolyn sodium decreased biliary proliferation, fibrosis, histamine secretion, and bile flow in multidrug resistance 2 knockout mice. Primary sclerosing cholangitis mice and patients have increased MCs. Knockdown of MC histidine decarboxylase decreased cholangiocyte and HSC proliferation/activation. CONCLUSION: MCs are recruited to proliferating cholangiocytes and promote fibrosis. Inhibition of MC-derived histamine decreases fibrosis, and regulation of MC mediators may be therapeutic for primary sclerosing cholangitis. (Hepatology 2016;64:1202-1216).


Asunto(s)
Colangitis Esclerosante/patología , Liberación de Histamina , Mastocitos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Animales , Sistema Biliar/patología , Proliferación Celular , Masculino , Ratones , Ratones Noqueados , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
3.
Lab Invest ; 96(11): 1198-1210, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27548803

RESUMEN

Mast cells (MCs) are immune cells that release histamine and other mediators. MC number increases after bile duct ligation (BDL) and blocking mast cell-derived histamine decreases biliary proliferation. We aimed to isolate and characterize MCs from cholestatic livers. Rats were subjected to BDL starting at 6 h and up to 14 days. MC infiltration was evaluated by toluidine blue. BDL rats were perfused using standard collagenase perfusion. Following enzymatic digestion, tissue was passed through a fine gauge needle. Suspensions were incubated with MAb AA4, washed and incubated with goat anti-mouse-coated Dynal beads. MCs were stained with toluidine blue, and in isolated MCs the expression of FCɛRI and MC proteases was measured. The expression of histidine decarboxylase, histamine receptors, VEGF receptors, and TIE 1 and 2 was evaluated by qPCR. Histamine and VEGF-A secretion was measured in MC supernatants. MC purity was evaluated by CK-19, CK-8, albumin, VAP-1, and α-SMA expression. In vitro, cholangiocytes and HSCs were treated with isolated MC supernatants from BDL rats treated with either NaCl or cromolyn sodium (to block MC histamine release) and biliary proliferation and hepatic fibrosis were measured. MCs infiltrate the liver and surround bile ducts starting at day 2. We isolated a virtually pure preparation of mature, functional MCs. TEM images reveal distinct secretory granules and isolated MCs secrete histamine. MCs express FCɛRI, chymase, tryptase, RMCP-I, and RMCP-II, but were virtually void of other cell markers. Biliary proliferation and fibrosis increased following treatment with MC supernatants from BDL rats+NaCl and these parameters decreased in cells treated with MC supernatants from BDL+cromolyn sodium. In conclusion, we have isolated and characterized MCs from cholestatic livers. MCs regulate cholestatic liver injury and hepatic fibrosis. This tool provides a better understanding of the paracrine influence of mast cells on biliary/liver pathologies.


Asunto(s)
Separación Celular/métodos , Colestasis/inmunología , Mastocitos/fisiología , Animales , Hígado/citología , Hígado/inmunología , Masculino , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA